sábado, 29 de diciembre de 2018

¿Sabemos algo de los Dinosaurios, los antiguos dueños de la Tierra? (III)


El más precioso de los trofeos conseguidos en esta expedición fue un gigante del jurásico, elBrachiosaurus -o lagarto con brazos-. Cuando, de regreso en Berlín, Janensch ensambló los huesos de aquella criatura el resultado fue realmente impresionante.

Aparentemente se trataba del mayor de todos los cuadrúpedos, saurópodos herbívoros, el formidable dinosaurio que hoy nos resulta tan familiar.

A diferencia de la mayor parte de otros dinosaurios, el Brachiosaurustenía las patas delanteras mucho mayores que las traseras. Su espalda descendía en pendiente hacia atrás y surgía de un cuello larguísimo al final del cual había una cabeza relativamente pequeña.

Esta cabeza quedaba a 12,6 metros del suelo, es decir, a suficiente altura para que elBrachiosaurus pudiera mirar por encima de una casa de cuatro pisos. Janensch calculó que el animal vivo debía de pesar unas dieciocho toneladas, hasta veinte veces el peso del mayor de los elefantes africanos.

 En la actualidad el esqueleto del Brachiosaurus se exhibe en el Museo de Historia Natural de la Universidad Humboldt en Berlín. Es, sin duda, el resultado más espectacular de la expedición a Tendaguru y el mayor testimonio de la larga carrera científica de Wemer Janensch. Hasta fecha muy reciente se había considerado al Brachiosaurus como el mayor de los animales que existieron en la Tierra en todos los tiempos.




 Pero otro dinosaurio, quizá un pariente distante del Brachiosaurus, es posible que lo sobrepasara en peso y altura. Se trata del llamado Ultrasaurus, que Jim Jensen encontró en Colorado en 1979. Partiendo del tamaño del omoplato, la única pieza grande del esqueleto que ha sido desenterrada, Jensen calcula que este dinosaurio tenía, por lo menos, un piso más de altura que el Brachiosaurus de Tendaguru.

En 1930, en su libro The Dinosaurs in East Africa, Parkinson atribuye la concentración de dinosaurios en Tendaguru a las probables condiciones que reinaron allí en el último período del jurásico.

Los dinosaurios vivían en la amplia desembocadura de un río que vertía sus aguas en una laguna separada del océano por un gran banco de arena. «No cabe duda de que muchos animales serían apresados en aquella laguna y en ella hallaron su tumba», escribió Parkinson, trazando una imagen no muy agradable.

«Las carcasas en estado de podredumbre flotaban gracias a los gases producto de la descomposición y se iban desmembrando lentamente -continuaba-. Las arenas en las cuales se encuentran los huesos son invariablemente de grano fino y para que tales pesos pudieran ser transportados por el agua, que necesariamente tenía que transcurrir a poca velocidad, cabe suponer que el conjunto era una masa fangosa, un verdadero barrizal».

En 1929, los británicos extendieron las exploraciones un poco más hacia el norte, hasta un lugar llamado Kindope. Allí, entre otros varios fósiles, los británicos encontraron un dinosaurio que se parecía al Stegosaurus escamoso de Norteamérica, aunque un poco más pequeño y con una altura de unos cinco metros. Se le dio el nombre de Kentrosaurus.

Los cazadores de fósiles habían establecido la distribución global de los dinosaurios. El primer lugar donde se excavaron sus huesos fue en Inglaterra, después en el resto de Europa, de modo especial en la cuenca minera de Bemissart, en Bélgica. Después fueron encontrados en gran abundancia en Norteamérica, de modo muy especial en los estados y las regiones del oeste.

En 1882 se identificaron los primeros huesos de dinosaurios en América del Sur, exactamente en Argentina. En 1924, algunos especímenes de dinosaurios fueron sacados a la luz en Australia. Y un verdadero tesoro de restos fósiles que esperaban en Asia, inspiraron una nueva aventura en el campo de la caza del dinosaurio.

A primeras horas de la mañana del 21 de abril de 1922, un grupo de hombres dejó la ciudad fronteriza de Kalgan, al norte de Pekín, y se encaminaron hacia la puerta de la Gran Muralla detrás de la cual está Mongolia. Innumerables caravanas habían hecho aquella misma ruta con anterioridad, viajeros de todo tipo y aspecto, pero sin duda ésta era la más extraña de todas.

En el grupo iban varios científicos norteamericanos, amantes de la aventura, naturalistas, paleontólogos y geólogos, con toda una cohorte de mecánicos, cocineros y ayudantes.

 Días antes los había precedido una caravana de setenta y cinco camellos que transportaban bidones de gasolina y cajas con otros suministros, que debían ser depositados en los lugares designados de antemano a lo largo de la ruta por la cual se intentaba cruzar el Gobi, ese gran desierto que se extiende al este y al oeste, durante 3 000 kilómetros, en el centro de Mongolia.

Aquellos cuarenta hombres, cinco vehículos a motor y setenta y cinco camellos, formaban la expedición del Asia Central, organizada y dirigida por Roy Chapman Andrews.

Éste describió la empresa como «la mayor expedición científica terrestre que jamás salió de Estados Unidos». Nada semejante se había visto nunca en Asia, ni figuraba en los anales de la caza del dinosaurio. El principal objetivo de esta expedición no tenía nada que ver con el dinosaurio, sino que se trataba, nada menos, que de la búsqueda del origen del hombre.

Tan ambicioso proyecto hubiera despertado sospechas entre los incrédulos burócratas chinos y mongoles. No podían creer que hombres en su sano juicio se arriesgaran a cruzar el desierto de Gobi simplemente para buscar viejos huesos.

Aquella historia tenía que ser la cobertura, el pretexto, tras el cual se ocultaba otra cosa. Supusieron que su objetivo tendría que ser algo más valioso, como el oro o el petróleo, o quizá tenían la intención de apoderarse de todo el país y aquellos hombres que se llamaban a sí mismos científicos no eran otra cosa que exploradores en busca de tesoros o algo aún peor, agentes del imperialismo norteamericano.

Esto era algo que podían entender, aunque no tolerar, pues esas razones eran las que durante muchos años venían atrayendo a los extranjeros a China y ahora a Mongolia. Pese a todo, debido a las cartas de presentación de altos funcionarios norteamericanos y a la intervención de gente influyente en Pekín, Andrews obtuvo el permiso necesario y se puso en acción tan pronto la nieve empezó a fundirse y el calor de la primavera volvió a Gobi.

En el año que Andrews había pasado en Pekín ocupado con los preparativos de la expedición, había tenido que oír los consejos de muchos que le prevenían en contra de su proyecto de partir de Kalgan en dirección a Urga, en la actualidad Ulan Bator, la capital de Mongolia. Recordó que muchos le habían dicho que debían de estar casi locos. Gobi era una tierra desértica, estéril, de arena gruesa, salvia camellera y arbustos espinosos.

En el verano, durante el día, el calor se hacía realmente insoportable. Pero eso, con ser muy desagradable, no era nada en comparación con los vientos gélidos con los que habrían de enfrentarse si se veían obligados a pasar allí el invierno. También era posible que el elemento humano fuese igualmente inhospitalario.

Los bandidos amenazaban continuamente la ruta de las caravanas y las luchas políticas azotaban el país. Mientras Andrews invernaba en Pekín, los ejércitos de Mongolia habían logrado expulsar a los chinos fuera de sus tierras.

En muchas ocasiones su expedición pasaría por lugares que evidenciaban la existencia de grandes batallas que no figuraban en los archivos y de las que el mundo exterior no supo nada. Apenas los mongoles vieron su país libre de chinos, cuando contemplaron cómo los rusos se infiltraban por el norte y el oeste.

Las tropas bolcheviques habían entrado en Mongolia en persecución de unidades de rusos blancos que no querían rendirse. Pero, después de haber acabado con ellos, los bolcheviques se quedaban allí para aprovecharse del caos político que había seguido a las guerras chinas.

 En la década de los años veinte Mongolia, gradualmente, fue cayendo bajo el control ruso; precisamente en el período en que Andrews estaba allí buscando el origen del hombre y cualquier otro tipo de huesos prehistóricos que encontrara en su camino. La historia fósil de partes alejadas de Asia, incluso Mongolia, era completamente desconocida.

El desierto de Gobi había sido cruzado en ambas direcciones y en múltiples ocasiones por varios exploradores y naturalistas en los años finales del siglo XIX, pero como no tuvieron demasiado tiempo para una exploración a fondo, se habían dado por satisfechos con una inspección superficial. Si encontraron algún fósil no informaron de ello, salvo con una excepción: en 1892 el geólogo ruso Vladimir A. Obruchev encontró un diente de rinoceronte fósil cuando su caravana hacía la ruta de Kalgan a Urga.

En 1900 Henry Fairfield Osbom había profetizado que en el Asia Central los paleontólogos encontrarían la cuna original del hombre primitivo. La idea había ganado cierta respetabilidad científica unos dos lustros antes, cuando William Diller Matthew, director de la sección de paleontología de los vertebrados en el Museo Americano de Historia Natural, postuló en un estudio sobre el clima y la evolución que el Asia Central podría muy bien ser el Jardín del Edén de la mayor parte de los mamíferos, incluso quizá del propio ser humano.

Se trataba de una hipótesis que merecía ser estudiada sobre el terreno. Ésta era la razón por la que Andrews entró en escena, un hombre en busca de aventuras y determinado

Andrews quiso ir a la exploración del Gobi, debido a la influencia de Osbom y Matthew. La idea de buscar los orígenes del hombre en una tierra extraña y remota disparó su imaginación, pero no cruzó por su mente la idea de buscar dinosaurios.

En un lugar tan árido e inhóspito como el desierto de Gobi no existía posibilidad alguna de vivir sobre el terreno.

De vez en cuando, la expedición podría comprar un cordero, cazar un antílope o aprovisionarse en Urga, pero no se podía confiar en ello.

 Todas las necesidades debían ser tenidas en cuenta de antemano y había que llevar consigo todas las provisiones necesarias. La expedición de Andrews tuvo unos buenos momentos después de pasar por la puerta de la Gran Muralla y en cuatro días la caravana motorizada recorrió 425 kilómetros desde Kalgan, es decir, la mitad de la distancia entre Kalgan y Urga.

El equipo alcanzó la laguna de Iren Dabasu, un terreno más estéril que el que habían dejado atrás, si es que eso era posible. Montones de arena, de forma cónica y de color rosado, se alzaban sobre el suelo como gigantescos hormigueros. En tiempos más tranquilos y pacíficos, obreros chinos reclutados en Kalgan recogían la sal del lago y la enviaban al sur en caravanas de carros tirados por bueyes.

 Pero aquéllos no eran tiempos de paz y cuando Andrews llegó allí se encontró con una escena de la máxima desolación. Andrews decidió establecer un campamento en la base de unos peñascos de un color gris blancuzco. Mientras supervisaban la instalación de las tiendas, Granger, Berkey y Morris recorrieron los alrededores en coche para inspeccionar la zona.

A la caída del sol, los dos coches de los científicos dieron la vuelta en tomo a un gran peñasco pardo y regresaron al campamento. Andrews se quedó mirando a Granger y vio que sus ojos brillaban de emoción. Berkey estaba «extrañamente silencioso». Granger metió la mano en sus bolsillos y sacó un puñado de fragmentos óseos. Berkey y Morris hicieron lo mismo. A la mañana siguiente, antes del desayuno, los científicos dejaron el campamento para buscar nuevos fósiles.

 Berkey encontró un fragmento del fémur de un animal que no supo identificar. A los ojos de Granger era de aspecto reptil. Granger subió a la parte más alta del macizo rocoso y cayó de rodillas. Comenzó a barrer la arena que cubría algo empotrado en el suelo.




Era la tibia de un gran reptil. Lo que habían encontrado eran los huesos de un dinosaurio, el primero hallado en Mongolia y uno de los primeros localizados en cualquier otro lugar del Asia oriental. Un Andrews pletórico de júbilo pudo olvidarse de los escépticos que allí, en Pekín, se habían reído de él.

Allí estaban los fósiles de Mongolia y había sido él quien dio con ellos. Los fósiles eran mucho más antiguos que el ser humano o que cualquier otra cosa que hubiese esperado encontrar. Reagrupada de nuevo, la expedición regresó al desierto de Gobi, en esta ocasión por el sudoeste de Urga, y se dirigió a los lugares donde debería realizar sus descubrimientos más importantes.

Al día siguiente a su llegada al campamento del Onagro, Shackelford, el fotógrafo, encontró un hueso muy bien conservado perteneciente al pie de una especie de antiguo rinoceronte.

Andrews buscó y excavó por los alrededores y descubrió algunos dientes medio rotos. A Granger le costó cuatro días de meticuloso trabajo extraer los dientes del suelo y el cráneo al cual pertenecían. El hueso del pie encontrado por Shackelford y el cráneo resultaron ser los hallazgos más interesantes de la expedición.

De regreso en 1924, Osbom determinó que habían pertenecido al rinoceronte gigante extinto llamado Baluchitherium, que anteriormente sólo había sido descubierto en Baluchistán.

Se trataba del mayor de los mamíferos terrestres que jamás existió en nuestro planeta, por lo que hasta ahora se sabe. Regresando hacia el este para comenzar el viaje de vuelta a China, la expedición siguió una antigua ruta de caravanas que una tarde los llevó al borde de un amplio lago, rodeado por paredes de piedra arcillosa de color rojizo.

El paisaje resultaba impresionante. Los hombres, asombrados y maravillados, lo bautizaron con el nombre de Flaming Cliffs («Acantilados Flamígeros») de Shabarakh Usu, actualmente Bain-Dzak. Andrews se quedó extasiado:

«Desde nuestras tiendas podíamos ver bajo nosotros un extenso estanque rosado, tachonado con salientes rocosos como extraños animales esculpidos en las rocas. Una de aquellas peñas fue bautizada con el nombre de “dinosaurio”, porque parecía un gigantesco Brontosaurus, sentado sobre sus patas traseras.

Otras parecían ser castillos medievales con almenas y torretas, como de ladrillo rojo a la luz del atardecer, puertas colosales, muros y terraplenes. Las cavernas se hundían profundamente en las rocas, y laberintos de barrancos y gargantas estaban llenos de fósiles que los convertían en un paraíso para los paleontólogos».

 Shackelford se dirigió directamente, sin vacilar, hacia un pequeño pináculo de rocas, en la cima de las cuales descansaba un hueso fósil blanco. Cuando Granger examinó aquel fósil llegó a la conclusión de que se trataba de un trozo del cráneo de un reptil. Fue recogido con sumo cuidado.

Después, todos los hombres descendieron a la laguna y se dispersaron, removiendo rocas y arena, para regresar con todos los fósiles que podían llevar consigo. Entre otras cosas Granger aportó un trozo de cáscara de huevo.

 Los buscadores apenas si le concedieron importancia, limitándose a creer que se trataba de la cáscara de un huevo de un ave fósil. Al año siguiente sabrían la verdad. De mala gana Andrews abandonó Flaming Cliffs, prometiendo regresar.

«Difícilmente podíamos suponer en aquel entonces, que más adelante llegaríamos a considerarlo el más importante depósito en Asia, si no en el mundo entero», escribió. Pero a medida que pasaba el tiempo el viento soplaba cada vez más frió y la expedición tuvo que regresar a China en octubre.

 La fortuna les había sido propicia: habían encontrado sus primeros fósiles al principio del viaje, habían sabido negociar con éxito sus permisos y visados con las autoridades administrativas de Urga, y habían quedado impresionados por el esplendor de la promesa paleontológica en Flaming Cliffs.

No habían tenido problema alguno, salvo algunas pequeñas dificultades con los vehículos a motor y, de un modo u otro, habían eludido todo encuentro con bandidos o guerrilleros.

En ese mismo invierno, Osbom cablegrafió: «Ha hecho usted un descubrimiento muy importante. El reptil es el antecesor del Triceratops tanto tiempo buscado. Ha sido bautizado como Protoceratops andrewsi, en su honor. Vuelva y encuentre más».

 Eso era exactamente lo que Roy Andrews intentaba hacer, precisamente, cuando la primavera volviera de nuevo a Mongolia. Andrews vio muchos cambios en la gran meseta cuando entró en Mongolia en abril de 1923. La vida esplendorosa había vuelto a lo largo de la ruta de la caravana de Kalgan a Urga.

 Las yurts se levantaban cerca de casi todos los manantiales, rebaños de cabras y ovejas pastaban en los pastizales del sur. Aquel año se unieron al tráfico algunos vehículos a motor, lo cual causaba una gran impresión en aquel paisaje desértico. Había transcurrido algo más de un año desde el cese de las hostilidades entre Mongolia y China y el país volvía a abrir sus puertas al comercio.

 La expedición de Andrews tomó la precaución de pasar la primera noche de camino en una posada china protegida por soldados y obtener una escolta militar fiable al cruzar parte de los territorios peligrosos. Pese a todas esas precauciones, algunos días más tarde, cuando Andrews con un pequeño grupo regresó a Kalgan para recoger parte del equipo que había llegado con retraso, tuvo un encuentro con tres bandidos a caballo.

Escapó por los pelos lanzando su automóvil contra ellos, lo que hizo que sus caballos se espantaran y se encabritaran. La expedición puso rumbo a Iren Dabasu y volvieron a ocupar el mismo campamento en que estuvieron el año anterior, estableciendo una estación de recogida de fósiles. Por petición de Andrews, el Museo Americano les había asignado otros tres buscadores de fósiles que se incorporaron a la expedición del Asia Central.

Se trataba de George Olsen y Peter C. Kaisen, que llevaban ya mucho tiempo trabajando en el museo, y Albert F. Johnson, que había trabajado con Bamum Brown en Alberta. Un joven chino que había formado parte del viaje de 1922, fue ascendido de criado y camarero a ayudante paleontólogo de Granger.

Doce hombres podrían haber trabajado durante doce meses sin agotar los tesoros fósiles. Johnson explotó el más rico de los tajos, una fuente de huesos de dinosaurios carnívoros y herbívoros de distintas especies, muchos de los cuales eran dinosaurios de pico de pato.

También encontró algunos fragmentos suavemente curvados, que recordaban las piezas de un rompecabezas perdido. Los Flaming Cliffs era el destino final de esta expedición. Siguiendo sus propias huellas de 1922, los hombres llegaron a Shabarakh Usu el 8 de julio y se quedaron allí cinco semanas. Los fósiles estaban por todas partes, pero el descubrimiento que daría fama mundial a la expedición ocurrió cinco días después, el 13 de julio.

Aquella tarde George Olsen regresó al campamento para informar de que había visto tres huevos fósiles en la piedra caliza. La piedra procedía del período cretáceo y, por lo tanto, probablemente era demasiado antigua como para contener huevos de grandes aves.

Era posible que no fueran huevos sino cualquier tipo de formación geológica que había hecho que la roca adquiriera ese aspecto.

Pero cuando Granger acompañó a Olsen al lugar del hallazgo e inspeccionó la cáscara estriada y marrón, llegó a la siguiente conclusión: «Tienen que ser huevos de dinosaurio.

No pueden ser otra cosa». Los dinosaurios eran reptiles y éstos, con muy pocas excepciones, ponen huevos. El huevo de cáscara dura fue de hecho el invento evolutivo, conjuntamente con las escamas, gracias al cual los reptiles pudieron dejar el agua y pasar a tierra firme. Los primeros anfibios, como las ranas y las salamandras de nuestros días, tenían que llevar una doble vida.

 Podían salir del agua, pero tenían que volver con frecuencia al líquido elemento, no sólo para mantener húmeda su piel suave sino también para poner sus huevos desprovistos de cáscara dura. Los huevos normales de anfibio son partículas de embrión envueltas en gelatina, que se secarían muy rápidamente fuera del agua.

Con el tiempo los reptiles descubrieron un modo de romper con los lazos que los ataban al agua. Fueron los pioneros en el desarrollo del huevo amniótico, una cápsula autocontenedora que podría ser puesta en cualquier parte. El embrión, que se desarrollaba dentro de la dura cáscara porosa, estaba rodeado por el líquido amniótico, una bolsa llena de albúmina como sustituto del agua y con la yema como reserva alimenticia.

 Este huevo, que los reptiles desarrollaron hace trescientos millones de años, en el período carbonífero, sirve como recordatorio de la ascendencia reptil de los mamíferos y las aves. Los humanos, como mamíferos, comparten este parentesco.

Aunque nosotros no ponemos huevos, el óvulo humano, una vez fertilizado, queda envuelto en una bolsa de líquido amniótico muy parecido al del huevo de los reptiles. La envoltura del óvulo humano contiene también una pequeña bolsa de yema, pese a que el embrión es alimentado, a través de la placenta, por la sangre de la madre. Y el fluido en ese saco es salado.

La evolución todavía tiene que erradicar este vestigio de nuestros orígenes en el mar, según el cual primero vino el pez que se arrastró fuera del agua a tierra firme, los anfibios que vivieron en ambos mundos, acuático y terrestre, y después los reptiles que con el advenimiento del huevo de cáscara dura estuvieron en condiciones de establecer su hogar permanente en tierra y dieron origen a los mamíferos. Por lo tanto no resultaba sorprendente descubrir que los dinosaurios habían sido animales ovíparos. La gran sorpresa hubiera sido descubrir que no ponían huevos.

Pero hasta aquel momento nadie podía estar seguro de ese aspecto de la vida de los dinosaurios. Jamás se habían encontrado huevos fósiles intactos. Estaban aquellos trozos de cáscara encontrados en Flaming Cliffs en 1922, y en Iren Dabasu sólo unas pocas semanas antes, claves que nadie pudo entender hasta el hallazgo de Olsen.

En el campamento, los científicos y los recolectores estudiaron los tres huevos. Cada uno de ellos tenía unos veinte centímetros de longitud por diecisiete de circunferencia y eran algo más alargados y planos que los de los reptiles modernos. La cáscara tenía varios milímetros de grosor y su superficie externa era más bien arrugada y estriada mientras que la interior era lisa y suave.

La expedición descubrió otros huevos, veinticinco en total, algunos agrupados en piña y otros en nidos. Granger encontró cinco juntos, formando un racimo. Johnson descubrió un grupo de nueve, dos de los cuales estaban rotos y exponían pequeños esqueletos de dinosaurios en estado de embrión.

Una sección de roca que contenía varios huevos fue extraída y enviada en su totalidad al Museo Americano, donde se vio que contenía trece huevos en dos círculos. Sus puntos estaban dirigidos al centro tal y como debieron ser puestos en su nido arenoso decenas de millones de años antes para que fuesen incubados por el calor del sol.

Pese a todo ese cuidado, por cualquier razón, aquellos huevos en particular nunca empollaron. Es posible que una ola repentina de frío impidiera la incubación o que una tormenta de arena los cubriera demasiado hasta el punto de impedir que llegara a ellos el necesario calor solar.

En todo caso, los huevos se resquebrajaron, la arena fina entró en su interior y así comenzó el lento proceso de fosilización. Granger llegó a la conclusión de que los huevos encontrados en Flaming Cliffs eran del Protoceratops, el dinosaurio descubierto por Shakelford allí mismo en 1922.

 De los siete cráneos y catorce esqueletos recogidos por la expedición, allí, en 1923, muchos fueron identificados como restos de ese supuesto ascendente de los dinosaurios cornudos, oceratópsidos. Posiblemente Granger tenía razón. Pero también otros dinosaurios vivieron en Flaming Cliffs en aquellos tiempos. Debía de ser un lugar de puesta de huevos.

Olsen encontró un pequeño esqueleto de dinosaurio que, cuando fue limpiado y puesto al descubierto, se vio que estaba agachado sobre un montón de huevos. Al parecer era un desdentado. Era posible que se alimentara sorbiendo los huevos del Protoceratops. Verdad o no, Osbom más tarde quedó impresionado por la prueba circunstancial al dar al animal en cuestión el nombre deOviraptor philoceratops.

Oviraptor significa «capturador de huevos», y philoceratops significa «amante de los huevos de los ceratópsidos». Los nombres aplicados a los dinosaurios reflejan muchas veces más la imaginación que las pruebas reales. La posición del esqueleto sobre un nido de huevos, dijo Osbom, «hizo que de inmediato el animal resultara sospechoso de haber sido sorprendido por una tormenta de arena en pleno acto de robar un nido de huevos de dinosaurio».

A partir de otros huevos y cráneos los científicos identificaron a otro supuesto ladrón de huevos, el Velociraptor («ladrón rápido»), representado en distintas películas de la serie Jurasic Park; a un gran dinosaurio cubierto de escamas al que se le dio el nombre de Pinacosaurus, y al dinosaurio de aspecto de ave, el Sauromithoides.

Este último tenía manos en forma de alas y un cráneo de constitución más bien ligera. Pero, como observó Andrews, era demasiado tarde en el tiempo geológico para ser un antepasado de las aves. Todos estos y muchos otros fósilesprotoceratopsianos eran nuevos para la paleontología.




Al término de la expedición de 1923, Andrews regresó a Estados Unidos. Las noticias del hallazgo de los huevos le habían precedido y habían dado lugar a un torrente de publicidad en diarios y revistas. Un huevo es una cosa muy frágil y la idea de la existencia de huevos que fueron puestos por dinosaurios hacía millones de años y que habían sobrevivido en forma fósil, parecía algo increíble.

Las fotografías de aquellos grandes objetos, tanto más que los huesos fósiles, documentaban la realidad de los dinosaurios como criaturas vivas que respiraron y se reprodujeron hacía muchos millones de años. Como truco publicitario se subastó uno de aquellos huevos que fue adquirido por Austin Colgate, tío de Bayard Colgate, que lo regaló a la Colgate University. Andrews lamentaría más tarde haber hecho aquella operación.

 Las autoridades chinas y mongoles al enterarse de la compra realizada por Colgate llegaron a la conclusión de que cada huevo de dinosaurio valía 5 000 dólares en los mercados mundiales y que si bien aquellos expedicionarios no habían ido a sus territorios en busca de petróleo o de oro sí buscaban algo igualmente valioso, aquellos huevos petrificados. Las siguientes expediciones fueron vigiladas con ojos cada vez más sospechosos.

 Andrews recibió la noticia, procedente de Nueva York, de que uno de los pequeños fósiles recogidos en Flaming Cliffs en 1923 era de un mamífero del período cretáceo, una rareza paleontológica de gran importancia. Hasta entonces sólo había sido descubierto un único cráneo de mamífero del mesozoico.

Fue encontrado en África del Sur e identificado como perteneciente al grupo conocido como de los multituberculata, es decir, de unos mamíferos insectívoros de pequeño tamaño emparentados lejanamente con los modernos erizos y musarañas.

Algunas de sus especies sobrevivieron a las extinciones que borraron a los dinosaurios de la faz de la tierra y siguieron existiendo durante algún tiempo más hasta que, finalmente, también llegó el final de su mundo. No dejaron descendientes directos, pero sus fósiles en las rocas arcillosas de Mongolia atestiguaban la existencia de abundantes especies de mamíferos entre los reptiles gigantes del mesozoico.

En su carta dirigida a Andrews, Matthew escribió: «Haga todo lo que esté en sus manos para conseguir otros cráneos». Andrews dio instrucciones a Granger, que ya había regresado para excavar en Flaming Cliffs, y en una semana los hombres del equipo reunieron siete pequeños cráneos de mamíferos.

Los análisis subsiguientes demostraron que aquellos animales apenas si superaban el tamaño de una rata, tenían el cuerpo muy peludo y hocicos puntiagudos. No todos eran multituberculados, que formaban una rama colateral en la evolución de los mamíferos a partir de los reptiles.

Los especímenes revelaron a William K. Gregory y a George Gaylord Simpson, paleontólogos del Museo Americano, que en la corriente principal del cretáceo los mamíferos, como clase zoológica, ya se habían separado de los marsupiales y los placentarios, esas especies en las cuales, después de dar a luz, la madre alimenta a sus fetos en la bolsa marsupial y aquellos otros que traían al mundo a sus hijos ya completamente formados.

Esto confirmaba la anterior especulación de Huxley y Osbom de que los lejanos ascendientes de los mamíferos placentarios se podían situar en tiempos tan remotos como el período cretáceo, en forma de pequeños mamíferos, semejantes a los roedores, que se escabullían entre las patas de los poderosos dinosaurios. Andrews dirigió otras dos expediciones a Mongolia, en 1928 y 1930.

Los científicos limitaron su campo de trabajo, en 1926, a la provincia de Yunnan. La guerra civil y la creciente xenofobia los mantuvo alejados de aquel escenario en 1927. Una de las expediciones de Andrews fue autorizada en 1928 y se descubrieron algunos otros restos de dinosaurios, así como algunos huevos, en Iren Dabasu, pero les fueron arrebatados por los soldados.

Después de seis semanas de negociaciones, en los que intervino la embajada de los Estados Unidos que tuvo que recurrir a tan altas esferas como el ministro de Asuntos Exteriores de Nankín, se consiguió que los fósiles fueran devueltos a Andrews y a sus científicos.

 La última expedición, la quinta, se organizó en 1930, pero ésta no se adentró demasiado en Mongolia, pues para entonces las condiciones se habían hecho tan insoportables que Osbom dio instrucciones a Andrews para que cerrara el cuartel general de la expedición en Pekín y no hiciera ningún nuevo viaje a los hostiles lechos de fósiles de Mongolia. Los paleontólogos estaban empezando a revivir un pasado de interés más inmediato y directo para los seres humanos: nuestras propias raíces fósiles.

En la década de 1850-1860 había sido descubierto el hombre de Neanderthal; el hombre de Java, el Homo erectus, en la de 1890-1900. Después, en 1924, Raymond Dart descubrió en África del Sur el llamado niño de Taung, el cráneo fósil del Australopithecus africanus.

 Ésta parecía ser la criatura que Darwin había predicho, a medio camino entre los antiguos simios y el hombre moderno. Andrews, actuando a espaldas de Osbom, había estado buscando en el lugar equivocado los orígenes del hombre.

 El descubrimiento de Taung puso en su lugar a la antropología y en las décadas siguientes el Australopithecus y el Ramapithecus se disputarían la atención del público con el Tyrannosaurus y el Brontosaurus. Lugares tales como el Gran Karoo, la garganta Olduvai y el valle Afar evocarían las historias del descubrimiento de los fósiles antaño asociados con Bernissart y Como Bluff, Hell Creek y Flaming Cliffs.

El modus operandi de la paleontología estaba cambiando. La mayor parte del mundo, con la excepción de las regiones polares, había sido recorrida y explorada ya por los cazadores en busca de fósiles vertebrados.

En Europa como en Norteamérica, en África, América del Sur, en Australia y también en Asia, desde la India a través de China hasta regiones tan alejadas como Mongolia, habían sido hallados e identificados huesos de dinosaurio.

Durante el período de los descubrimientos, la ciencia paleontológica inicia su investigación con la exploración a cielo abierto, a la que siguen el examen de los hallazgos, la acumulación de pruebas en un frente amplio, el seguimiento de las pistas que lleven a solucionar los puntos oscuros del problema y la elaboración de hipótesis bien fundamentadas.

Los paleontólogos seguían saliendo al campo cada verano en busca de nuevos huesos. Aquellos nuevos exploradores del tiempo buscaron en los lechos jurásicos y cretáceos de América del Norte con un celo que no había vuelto a verse desde los días de Bamum Brown.

Dinosaurio Jim Jensen, que había excavado los huesos del que bien podría haber sido el mayor de todos los dinosaurios, se convirtió en una celebridad menor para los niños. Los científicos encontraron un posible antepasado del Tyrannosaurus rexen el oeste de Texas. Se abrieron grandes yacimientos de dinosaurios fósiles en Alberta. Científicos polacos, rusos y mongoles volvieron a recorrer las zonas del Gobi antaño reconocidas por Andrews e hicieron descubrimientos espectaculares.

 La investigación se adentró más profundamente en el triásico. En 1984, un equipo dirigido por Robert Long, de la Universidad de California, descubrió en el Paitend Desert, Arizona, lo que se creyó podría ser el más antiguo de todos los dinosaurios conocidos hasta la fecha. Allí, en rocas que se calculó tenían doscientos veinticinco millones de años de edad, el equipo excavó el esqueleto de una criatura del tamaño de un avestruz pequeño.

 Algo más antigua que los Staurikosaurus descubiertos en América del Sur en la década de los sesenta, que anteriormente se habían considerado como los más antiguos de los dinosaurios, esa criatura podría muy bien representar una familia enteramente nueva de dinosaurios vegetarianos que podían estar emparentados con los antiguos Plateosaurus y que, tal vez, eran antepasados muy antiguos de los Brontosaurus. Pero el éxito de los cazadores de dinosaurios, en especial el de los profesionales, dejó de ser medido por el tonelaje de los huesos encontrados o por el número de nuevas especies que pudieron identificar.

 Los museos tenían ya tantos huesos que no sabían qué hacer con ellos, así que el interés principal se enfocó en la búsqueda de claves que descubrieran la anatomía, conducta y fisiología de los dinosaurios y dieran respuesta a los interrogantes. La nueva generación de paleontólogos empezó a preocuparse por estas respuestas y trató de situar el lugar de los dinosaurios a lo largo del tiempo.

Una figura en la transición de aquellos días fue Edwin H. Colbert. Comenzó a estudiar paleontología bajo la tutoría de Osbom y pasó a ser su ayudante investigador en 1930 y a ocupar el cargo de director de paleontología de los vertebrados en el Museo Americano.

Escribió varios libros técnicos y de divulgación y, más recientemente, en 1983, uno tituladoDinosaurs: An Illustrated History. A él se le atribuye, con razón, el hallazgo de miles de fósiles, no siempre de dinosaurio, que incluyen más de cincuenta nuevas especies y diez nuevos géneros.

En 1974 el Time llamó a Colbert «el Dick Tracy de la Era Mesozoica». Uno de sus descubrimientos más espectaculares lo hizo en el verano de 1947, en Ghost Ranch, cerca de Abiquiu, Nuevo México. George Whitaker, el ayudante de Colbert, dio con algunos huesos embutidos en las rocas de la pared de un barranco. Entre las primeras muestras recogidas resultó de especial importancia un pequeño trozo de una garra que Colbert identificó de inmediato como perteneciente a un Coelophysis.

Entre los dinosaurios más antiguos de los conocidos hasta ahora, que vivieron hace más de 213 millones de años, el Coelophysis fue descrito por Cope en 1887, pero hasta ahora sus restos hallados han sido fragmentarios y escasos. Aquel verano Colbert recogió en Ghost Ranch los huesos de una docena de esqueletos completos.

No se trataba de animales de gran tamaño, pues sólo medían un máximo de tres metros, y los huesos hablaban de la activa vida de carnívoros bípedos que debieron de vivir en los finales del triásico.

Sus miembros posteriores eran alargados y recordaban a los de las aves, hechos para conseguir gran velocidad, y las manos tenían tres dedos terminados en garras dispuestos para dar caza a sus presas. Dentro de la cavidad corporal de al menos uno de los especímenes se encontraron huesos de un Coelophysis joven.

Al principio Colbert mostró sorpresa por esto y tuvo sus dudas de que lo que estuviera viendo fuese un embrión de lo que hubiera sido la primera prueba de que algunos de los dinosaurios no eran ovíparos sino vivíparos, es decir, que traían vivos al mundo a sus hijos. La apertura de la pelvis, según observó, era demasiado pequeña y podía permitir el paso de huevos, pero no de animales vivos.

Esto dejaba sólo una explicación alternativa. Colbert escribió: «La inevitable conclusión era que el Coelophysis fue un animal caníbal y en ocasiones se comía a sus propios hijos, exactamente como hacen algunos reptiles modernos. Una imagen no muy bella y agradable, pero sí realista».

Puesto que resultaba imposible realizar experimentos fisiológicos con los dinosaurios, largo tiempo extinguidos, Colbert decidió que lo más útil que podía hacerse era investigar a los más parecidos entre sus parientes vivos, como los cocodrilos y caimanes. Con Raymond B. Cowles, un zoólogo de la Universidad de California, y Charles M. Bogert, también zoólogo, pero perteneciente al Museo Americano, Colbert capturó trece caimanes, algunos de los cuales llegaban a alcanzar los dos metros de largo, y los colocaron fuera del agua bajo el ardiente sol de Florida.

Tomaron sus temperaturas a intervalos de diez minutos o menos. Cuando los caimanes alcanzaban temperaturas que probablemente hubieran causado su muerte, eran sacados del sol y conducidos a la sombra para que se enfriaran.

Los investigadores siguieron tomando sus temperaturas una y otra vez e, incluso, algunos de los animales fueron atados a marcos de madera para mantenerlos en posición erecta como la de los dinosaurios. Todo eso resultó excesivo para dos de estos animales, que murieron.

El experimentó sirvió para que Colbert y sus colegas establecieran que el aumento y la disminución de la temperatura estaba en relación directa con la masa del animal. Los caimanes pequeños se calentaban más rápidamente al sol y se enfriaban más pronto a la sombra. Los mayores sufrían ascensos de la temperatura más lentos, e igualmente lo eran sus descensos.

Colbert salió del experimento lleno de cardenales y pequeñas heridas por su lucha con los caimanes, pero con la impresión de que había encontrado una posible pista sobre el éxito de los dinosaurios.

Aunque presumiblemente eran animales de sangre fría, como todos los demás reptiles, tenían la capacidad, gracias a sus grandes masas, de retener el calor corporal por períodos muy largos, lo que les daba la ventaja de la sangre caliente, es decir, de temperatura constante, que los mamíferos y otras criaturas de sangre caliente consiguen gracias a su elevado metabolismo.

 Así los dinosaurios podían ser activos como los mamíferos sin ser animales de sangre caliente. Los experimentos de Colbert con los caimanes fueron introducidos como una prueba de gran valor en los debates sobre si estos animales eran de sangre caliente a diferencia de los reptiles modernos.

 Colbert también participó en otro descubrimiento que aportaría la prueba decisiva en nombre de un nuevo concepto científico que no sólo explica la ubicuidad de los animales del mesozoico, como los dinosaurios, sino que ilumina la historia dinámica de toda la Tierra.

No sería ésa la última vez que los intentos de resolver el enigma de los dinosaurios conducirían a sorprendentes teorías con respecto a la historia de la Tierra. En una expedición a la Antártida en 1969, Colbert, con Jim Jensen, encontró los huesos y el cráneo de un Lystrosaurus. Éste no era un dinosaurio sino una de las líneas más antiguas de reptiles que relevaron a los dinosaurios en la continua lucha por la supervivencia en la naturaleza.

Era uno de los terápsidos, reptiles de aspecto de mamíferos que Robert Broom sacó al primer plano científico a finales del siglo pasado, en África. Colbert se había pasado algún tiempo en el Sur de África estudiando a losterápsidos, entre los que se incluía el Lystrosaurus, un animal robusto, de cuatro patas y del tamaño de un perro grande, así que ya sabía lo que buscaba en la Antártida.

Si se encontraban en la Antártida los fósiles del triásico que ya habían sido encontrados en África esto podía considerarse como una prueba irrefutable de que Gondwana, el supercontinente del sur, había existido y, como respuesta a la presión de las placas tectónicas se había partido hacia finales del mesozoico.

Los científicos proclamaron el descubrimiento de Colbert-Jensen de un Lystrosaurus en otro continente como prueba irrefutable que señalaba la conexión de la Antártida con África, lo que daba mayor consistencia a la teoría de la deriva de los continentes. La interconexión de los continentes durante la mayor parte del mesozoico hacía más fácil entender por qué los dinosaurios, incluyendo muchas especies estrechamente emparentadas, existían en todo el mundo.

 Tan sólo en la Antártida no habían sido encontrados sus fósiles, hasta entonces, pero los científicos no se sentirían demasiado sorprendidos si un día, como ya ha ocurrido con elLytrosaurus, se encontraban allí fósiles de dinosaurios.

La nueva generación de paleontólogos no sólo ampliaría y extendería los anteriores logros, como por ejemplo con el hallazgo de esqueletos completos de Coelophysis, o con la revisión del recientemente recapitadoBrontosaurus, sino que pasarían al campo más complejo y controvertido de la evolución del dinosaurio y de las razones y causas de su éxito y su fracaso. En la actualidad parece más importante que nunca, y también más posible, el entendimiento de los terápsidos.

Estos animales dominaron la Tierra millones de años antes del auge de los dinosaurios. Tuvieron que ceder ante éstos y desaparecieron, pero no antes de que algunos de ellos sufrieran la trascendental transición de reptiles a los primeros mamíferos.

Fueron los antepasados de todo gato o murciélago, ballena o primate, e incluso de todos los seres humanos. Menos espectaculares en apariencia que la mayoría de los dinosaurios, los terápsidos nunca desataron la imaginación humana del modo como lo hicieron los dinosaurios. En 1981 se celebró, por vez primera, una conferencia de importancia dedicada al estudio de su evolución.

Pero el registro de fósiles de esos reptiles semejantes a los mamíferos y de sus antepasados es más completo que el de cualquier otro grupo de vertebrados terrestres, con la única excepción de los mamíferos del terciario. Fueron muy diversos y pasaron con éxito la evolución. Los antepasados de los terápsidos formaron el grupo de partida del género básico reptil hace ya más de trescientos millones de años, en el período carbonífero.




Los reptiles acababan de desarrollarse de los anfibios. Una línea progresó en un sentido que podríamos llamar convencional, en dirección hacia los reptiles para acabar convirtiéndose en cocodrilos y dinosaurios, serpientes y lagartos.

Otra línea, la subclase de los sinápsidos, de la clase de los reptiles, se convirtieron en reptiles con aspecto de mamíferos. Los primeros de ellos fueron los pelicosaurios, el más famoso de los cuales fue el Dimetrodon, dotado de una aleta dorsal como la del tiburón. Los terápsidosaparecieron en la Tierra hace unos 265 millones de años, al principio del pérmico, y hubieron de muchos tamaños y especies. Iban desde las dimensiones de una rata a las de un rinoceronte y, a veces, tenían formas ridículas.

John C. McLoughlin, en su libro Synapsida: A New Look into the Origen of Mammals, dijo: «Muchos de ellos nos hacen pensar que las fuerzas de la selección evolutiva hubieran sufrido un caso grave de delirium tremens durante el apogeo terápsido.»

Algunos eran herbívoros, otros carnívoros y otros omnívoros. En época muy temprana comenzaron a mostrar signos de tendencias mamíferas. Pasaron de una postura horizontal semejante a la de los lagartos, a una forma de caminar algo más erecta, con las cuatro patas balanceándose bajo el cuerpo.

El nombre de reptil, del latín reptilis, arrastrarse, empezó a convertirse en excesivamente restrictivo y pasó a ser, literalmente, como una descripción de los miembros extinguidos de esa amplia clase de animales. Aunque durante un siglo se supuso que los mamíferos descendían de los terápsidos, sólo hasta hace muy pocos años los científicos han tenido la certeza de esta vinculación.

 A partir de nuevos hallazgos de fósiles y de nuevas interpretaciones de anteriores descubrimientos, los científicos siguieron el rastro de los importantes pasos en la transición y determinaron que el momento decisivo debió de ocurrir a finales del triásico, hace unos 215 millones de años. Cráneos bien conservados de mamíferos de esa época, encontrados en el sur de China y en las reservas de los indios navajos en Arizona, Estados Unidos, resultaron pruebas muy importantes y reveladoras cuando fueron comparados con los cráneos de los terápsidos.

En 1982, en su libro Mammallike Reptiles and the Origin of Mammals, Thomas S. Kemp, de la Universidad de Oxford, escribió: «Éste es un ejemplo conocido en el que la evolución de una clase de vertebrados procedente de otra clase está bien documentada por los fósiles».

Fue en los cráneos, en particular en las mandíbulas, donde los científicos identificaron algunas de las más notables evidencias de que los terápsidos eran mamíferos en potencia, en tránsito evolutivo. Los fósiles terápsidos, encontrados en particular en África del Sur, en América del Sur y en Gran Bretaña, muestran el cambio que estaba teniendo lugar. Pero en los terápsidos no se encuentran algunas de las características que distinguen a los mamíferos de los reptiles.

 Tenían que desarrollar aún un cerebro mayor. De acuerdo con descubrimientos más recientes, elterápsido que parece más próximo a los antepasados directos de los mamíferos es un pequeño carnívoro conocido con el nombre de Probainognathus, cuyos fósiles se encontraron en los sedimentos del primitivo jurásico.

En sus días de crepúsculo, sólo sobrevivían las más pequeñas especies de los terápsidos. Al parecer, los animales de mayor tamaño no sobrevivieron a la extinción masiva que se produjo a finales del período pérmico.

Entre los más pequeños supervivientes emergió el Probainognathus y su descendiente o descendientes se desarrollaron hasta convertirse en, al menos, tres grupos de mamíferos primitivos: Morganucodon,Kuehneotherid y Amphilestid.

El último, dice Crompton que parece «haber vivido felizmente durante un tiempo y desaparecer quién sabe dónde». Sin embargo, los descendientes delMorganucodon se desarrollaron en líneas que llevaron al Platypus y otros mamíferos actuales que son ovíparos. El Kuehneotherid se cree que es el ascendiente de casi todos los demás tipos de mamíferos.

En la época de la transición de los terápsidos a los mamíferos, a finales del triásico o comienzos del jurásico, los dinosaurios ya se habían autoestablecido como los herederos inmediatos de losterápsidos en el sentido de que en esos días eran los tetrápodos dominantes.

Tetrápodo es el término científico que se emplea para los vertebrados terrestres y significa literalmente «cuadrúpedo».

Los dinosaurios surgieron de otra rama importante de los reptiles. Aparentemente deben su auge, en parte, a la extinción masiva ocurrida en el pérmico y, también, parece como si la época de los dinosaurios estuviera encerrada entre los paréntesis de dos tragedias globales. Pronto, después de la extinción del pérmico, comenzaron a proliferar algunos reptiles que habitaban en los pantanos y fangales, los tecodontos.

Tenían un aspecto parecido al de los modernos cocodrilos y un gran apetito por las restantes especies de losterápsidos. Con el tiempo los tecodontos pasaron y su existencia fue reemplazada, en el triásico, por los arcosaurios, los reptiles que reinarían durante el mesozoico.

Ramas procedentes del tronco del tecodonto constituyeron cuatro grupos principales de arcosaurios,-los crocodílidos y los pterosaurios, así como dos líneas de dinosaurios, los saurisquianos y losomithisquianos.

Entre los primeros omithisquianos se contaban los coelurosaurios, esos bípedos de cuerpo ligero y muy ágiles que representaba una notable diferencia en la norma de los reptiles. Uno de esos coelurosaurios eran el Coelophysis, cuyos huesos fueron encontrados de modo tan abundante por Edwin Colbert.

 Uno de los primeros saurisquianos, conocidos por elPlateosaurus, un animal de mucho mayor tamaño y un predecesor, en el triásico, delBrontosaurus y el Diplodocus, hallado, según se sabe, en las excavaciones realizadas en los años veinte por Friedrich von Huene, de la Universidad de Tubinga.

Muchos de los terápsidosprobablemente no significaban un desafío para aquellos predadores ágiles e imponentes. Los que se alimentaban de día y dormían de noche eran especialmente vulnerables para los dinosaurios en auge.

Los terápsidos que sobrevivieron durante el triásico, hasta que hicieron su transición a los mamíferos, debieron de haber encontrado algún nicho ecológico relativamente seguro. Por ejemplo, aquellos que evolucionaron mejoraron el sentido del oído y del olfato y podían, de algún modo, controlar la temperatura de sus cuerpos, rasgos peculiares de los mamíferos, y se convirtieron en criaturas nocturnas.

Aquellos que no pudieron adaptarse a la vida nocturna dejaron de existir. Por esa razón sobrevivieron aquellos terápsidos que tenían más características propias de los mamíferos y transmitieron sus genes a sus descendientes que se fueron haciendo cada vez más mamíferos hasta terminar siéndolo.

El legado de su estrategia de supervivencia se prolongó durante una gran parte del mesozoico. Los pequeños mamíferos que vivían a la sombra de los poderosos dinosaurios eran, generalmente, criaturas nocturnas.

Al comparar los terápsidos y los primitivos mamíferos con los dinosaurios, Robert T. Bakker define como divinas las razones de la «superioridad» de los dinosaurios en el mesozoico. Por lo corriente sólo se han conservado en estado fósil las partes duras (huesos y dientes) de los animales vertebrados.

Sin embargo, músculos, tendones, nervios y vasos sanguíneos, y en ocasiones algunos otros tejidos y órganos blandos dejaron su marca en la superficie de los huesos. Detallados análisis de la anatomía de diversos vertebrados vivos revelan cómo esos órganos blandos afectan las superficies de los huesos.

 A partir de esas interpretaciones se hace posible deducir algunas cosas de la actividad, fisiología e, incluso, de la conducta de animales que ahora nos son conocidos sólo por sus huesos fosilizados. Ese nuevo método de estudiar los vertebrados fósiles está aportando algunas pruebas que desafían muchas de las teorías sobre los hábitos y la ecología de uno de los grupos más populares de animales extinguidos, los dinosaurios.

Esas grandes bestias eran reptiles cuyos parientes más cercanos aún vivos son los modernos cocodrilos. Generalmente, los paleontólogos aceptaron que en todos los detalles de su vida, los dinosaurios eran simplemente cocodrilos, lagartos o caimanes que habían crecido más de lo normal.

Los crocodílidos y los lagártidos pasan gran parte de su tiempo inactivos, tomando el sol echados en la roca o el tronco más conveniente, y comparados con otros animales modernos, la mayor parte de los reptiles modernos son lentos y perezosos. De aquí viene que la reconstrucción de un dinosaurio como el Brontosaurus nos lo presente como una montaña de carne fláccida que se mueve a su alrededor sólo de forma lenta y poco frecuente.

Esta visión del dinosaurio, señalaba Bakker, presentaba un «problema que sumía en la perplejidad». ¿Cómo fue posible que estos lentos y perezosos dinosaurios dominaran a losterápsidos, que se estaban desarrollando activamente en la línea hacia los mamíferos y pudieron mantener sometidos a los mamíferos a lo largo del mesozoico?

 Bakker continuó mostrando evidencias basadas en las posturas y en los sistemas cardiovasculares de los dinosaurios que demostraban que aquellos animales fueron «criaturas ágiles, rápidas y llenas de energía y que vivían a un nivel fisiológico alto, sólo conseguido en todas partes entre los vertebrados terrestres por los mamíferos últimos y más avanzados».

Para ilustrar esta nueva visión del dinosaurio, Bakker dibujó para la primera página de la revista un boceto de una pareja de dinosaurios cornudos al galope, y dijo que eran capaces de alcanzar una velocidad de hasta cincuenta kilómetros por hora.

Al parecer había más vivacidad en los dinosaurios de la que los científicos les habían atribuido o imaginado corrientemente. En la conclusión Bakker escribió: “Ahora podemos comenzar a responder a la cuestión planteada al principio de este artículo: ¿por qué los reptiles con rasgos mamíferos perdieron en su competencia con los dinosaurios?”

Al parecer los mamíferos no adquirieron la forma más eficaz de locomoción erecta hasta bien entrado el período cretáceo, a finales de éste, es decir, cien millones de años después de que la lograran el evolucionado tecodonto y los primeros entre los dinosaurios.

En la actualidad, al pensar en los mamíferos nos los presentamos como criaturas ágiles, activas y llenas de energía mientras que a los reptiles los vemos como animales que, de acuerdo con su nombre, se arrastran, reptan, lentamente por el suelo.

 Sin embargo, lo cierto es que los dinosaurios y sus parientes consiguieron notables avances en su locomoción mucho antes de que los lograran los mamíferos, y la superioridad de sus extremidades fue sin duda el factor más importante en el éxito del arcosaurio y la extinción de los reptiles con características de mamífero.

 Ya bien entrada la noche, en un día de agosto de 1964, John Ostrom y su ayudante Grant E. Meyer recorrían una ladera en el sur de la Montana central, cerca de la ciudad de Bridger. Se trataba de una pradera, campos de yerba interrumpidos por lugares erosionados y situados entre colinas de pinos y enebros.

 Ostrom y Meyer acababan de examinar un lugar que pensaban convertir en sede de excavaciones al año siguiente e iban a lo largo de la ladera, de un terraplén erosionado a otro; se habían alejado ya unos setecientos metros del lugar elegido cuando vieron unas garras que sobresalían de la tierra.

Aquellos huesos habían estado allí años y años sin ser reconocidos. En cuestión de minutos pusieron al descubierto otras partes de aquella mano. Los diversos huesos de los dedos tenían la longitud aproximada de los dedos de un ser humano adulto. Las garras eran largas y afiladas. Ostrom y Meyer habían encontrado una poderosa mano con tres dedos prensiles.

También hallaron algunos dientes, los dientes afilados, de sierra, de lo que fuera un carnívoro. Al día siguiente regresaron provistos de otras herramientas más útiles que sus navajas, y los dos paleontólogos continuaron excavando hasta hacer un descubrimiento aún más excitante: los huesos perfectamente conservados de un pie.

Se lo quedaron mirando llenos de sorpresa. En todos los demás dinosaurios carnívoros los pies traseros son, por lo general, de forma parecida a los de las aves, con tres dedos principales y uno más pequeño en la parte interior o en la posterior del pie. Por lo general, esos tres dedos principales son iguales de forma, con el central algo más largo y los otros dos iguales entre sí en longitud y divergentes del central.

Es decir, en conjuntos semejantes a los de las aves. Pero el pie de la criatura que ellos habían encontrado difería del plan básico general. El dedo externo y el medio tenían la misma longitud y el más interno de los dedos principales salía hacia fuera «como un pulgar hinchado», dijo Ostrom. Este dedo interior era más largo que los demás y en lugar de tener una corta garra puntiaguda y triangular como los otros, estaba dotado de una garra larga y delgada con la forma curvada de una hoz.

Ostrom jamás había visto antes nada comparable a aquella terrible garra, pero podía imaginarse bien el uso que el animal debió de hacer de aquel instrumento. Para aquella criatura que vivió hace más de ciento veinticinco millones de años, Ostrom pensó el nombre de Deinonychus, que significa «garra terrible».

El Deinonychus es el más notable de los dinosaurios hasta ahora descubiertos. Casi todo lo relacionado con ese animal, sus brazos y piernas, sus terribles garras y su cola rígida, fue pronto presentado como prueba de la existencia de los dinosaurios rápidos, ágiles y dinámicos de Bakker.

La evidencia, según la vieron muchos paleontólogos, parecía abrumadora, pero el debate subsiguiente polarizaría la paleontología de los dinosaurios. ¿Formaban éstos un grupo de animales de sangre caliente como las aves y los mamíferos? ¿Era su metabolismo más parecido al de los mamíferos que al de los reptiles, lo que les daba capacidad para vivir una existencia más activa?

Ostrom, en su examen inicial del Deinonychus, comenzó a sospechar que ése podía ser el caso. Pero la idea, en sí, contradecía el punto de vista tradicional que presenta a los dinosaurios como criaturas tan perezosas y lentas como los reptiles, basándose en su anatomía ósea, que parece indicar que debieron de ser animales de sangre fría. Esta deducción lógica no fue discutida seriamente hasta que una nueva generación de paleontólogos empezó a contemplar a los dinosaurios, en especial al Deinonychus, bajo un nuevo ángulo.

Durante un período de tiempo demasiado largo los paleontólogos parecieron ciegos con respecto a los atributos no reptiles de los dinosaurios. Sólo porque un determinado animal fósil sea integrado en una clase particular no debe deducirse que posee todas las características y atributos de los miembros modernos de esa clase.

Al examinar los esqueletos, Ostrom llegó a la conclusión de que el Deinonychus era relativamente pequeño, en relación con otros dinosaurios y, además, también más ligero. Tenía una altura de un metro y medio aproximadamente y desde el hocico hasta la punta de la cola debía de medir dos metros y medio.

A juzgar por los huesos de sus extremidades y por sus vértebras, el animal en plenitud de su crecimiento no debía de pesar más de ochenta kilos. A juzgar por sus dientes era un carnívoro, y así fue clasificado con los dinosaurios saurisquianos, el mismo suborden que losTyrannosaurus. La estructura de las extremidades delanteras y de las manos mostraba claramente que el animal era forzosamente un bípedo y que no podía, en ningún caso, marchar a cuatro patas aunque hubiese querido hacerlo.

Al igual que muchos otros reptiles, elDeinonychus tenía una cola larga en relación con su longitud total, aproximadamente la mitad de ésta, pero, además, la cola terna una característica totalmente distinta a todo lo que Ostrom había visto hasta entonces. En su entera longitud la cola estaba como encajada en unos canutos óseos y paralelos, que no eran más que tendones osificados, como los que Dollo había hallado en los Iguanodontes belgas.

 Al principio, esto extrañó y llevó a error a Ostrom, hasta que se dio cuenta de que una cola rígida, que presumiblemente resultaba posible debido a las «varillas» osificadas, debía de haber sido muy importante para el Deinonychus.

Tal y como Ostrom se la representaba, aquella cola rígida podía ser movida hacia arriba y hacia abajo, hacia los lados y girando como las manecillas de un reloj. La cola, concluyó, era utilizada como un estabilizador dinámico, una especie de contrabalance o de equilibrador necesario para un animal bípedo muy activo y móvil.

 Eso, y otras evidencias halladas en el esqueleto, le indicaban a Ostrom que la postura de aquel bípedo era mucho más parecida a la de un avestruz, con el tronco mantenido casi en posición horizontal, el cuello curvado hacia arriba y la cola surgiendo recta por detrás.

 «En mi opinión -escribió Ostrom en 1969-, ésta resultaba una postura de aspecto mucho más natural que la postura del canguro, con la que se suele ilustrar generalmente a otros dinosaurios carnívoros, como el Allosaurus o el Tyrannosaurus».

 Añadió que si el esqueleto de esos gigantes hubiese estado tan bien preservado como los delDeinonychus, los científicos probablemente hubiesen podido observar que también ellos tenían con frecuencia sus colas levantadas y las utilizaban como contraequilibrio rígido, más que dejarlas arrastrar por el barro.

Si el Deinonychus andaba y corría sobre sus dos extremidades traseras esto hacía más notable aún la presencia de la terrible garra, una especie de espolón curvo, en cada pie. Podía esperarse esa especie de garra en una mano prensil, razonó Ostrom, pero no en el dedo de un pie que está en contacto con el suelo, lo cual hacía muy posible que se rompiera o despuntara, incluso que hiriera a su propio dueño y lo dejara indefenso.

Cada una de esas garras sobresalía unos diez o doce centímetros, ciertamente un arma defensiva de gran eficacia que, posiblemente, también podía ser utilizada para dar muerte y descuartizar a sus presas. «El sentido común nos dice que una hoja curvada como una hoz, afilada y fina sirve para cortar o desgarrar y no para excavar, subirse a los árboles o facilitar el desplazamiento en tierra», dijo Ostrom. Pero ¿cómo manejaba el animal esa arma tan letal?

 ¿Cómo la protegía cuando corría? A esta última cuestión los fósiles parecían ofrecer una respuesta directa. Las dos principales articulaciones del dedo interno, el que poseía la garra en cuestión, resultaban excepcionales en el sentido de que permitían que la garra pudiera ser alzada y desplazada hacia arriba y hacia atrás, con lo que se lograba separarla del suelo.

Las articulaciones de los otros dedos de las patas traseras no eran retráctiles. La respuesta a la otra pregunta, la de cómo utilizaba el animal la garra, llevó a Ostrom a interpretaciones que señalan la importancia delDeinonychus para los paleontólogos.

 «A nadie nos sorprende ver cómo un águila o un halcón golpean con sus espolones al saltar o se mantienen de pie sobre una pata y golpean con el espolón de la otra -escribió Ostrom -, pero resulta ridículo imaginarse a un lagarto o a un cocodrilo (o cualquier otro de los modernos reptiles) irguiéndose sobre sus patas traseras para lanzarse al ataque, simplemente porque los reptiles son incapaces de tan complicadas maniobras, de esos juegos de equilibrio tan delicados, por falta de agilidad, como también son incapaces de una actividad tan exigente metabólicamente. Como sabemos, los reptiles son animales lentos y perezosos que se arrastran o permanecen inactivos la mayor parte del tiempo».

La garra en forma de hoja de hoz requería del Deinonychus que hiciera precisamente lo mismo que el águila oel halcón, es decir, que atacara con uno o con ambos pies a la vez. Eso no tiene nada que ver con el andar o el correr o el permanecer de pie, pero podía explicar la utilidad de la cola como elemento equilibrador. Sugiere, además, la existencia de una bioenergía impropia de un reptil que resultaba necesaria para poder mantener una lucha de ese tipo.

Ostrom llegó a la siguiente conclusión: «Esa criatura debía de estar de pie o saltar sobre un pie u otro mientras golpeaba con el opuesto. Tal equilibrio y agilidad son desconocidos en cualquiera de los actuales reptiles vivos». El examen de los brazos y de sus largas manos prensiles parecen haber reforzado la opinión de Ostrom de que el Deinonychus era un depredador inteligente.

La articulación de la muñeca giraba para permitir que las manos se volvieran una hacia la otra. De ese modo el animal podía sujetar la presa con las manos y trabajar con ambas en conjunción. Eso es algo que sólo pueden hacer los seres humanos y algunos otros mamíferos. ElDeinonychus y algunas especies emparentadas con él eran los únicos dinosaurios que, por lo que se sabe, tuvieron esa especial movilidad de las muñecas.

La resonancia de los informes de Ostrom de 1969 sobre el Deinonychus y el metabolismo de los dinosaurios aún continúa teniendo eco en los estudios sobre el dinosaurio. En un informe en el Bulletin del Museo Peabody, Ostrom resume las consecuencias que pudo deducir de los esqueletos que había descubierto en Montana.

Escribió: «El pie del Deinonychus es, posiblemente, la prueba más reveladora, desde el punto de vista anatómico, de los hábitos de los dinosaurios en el sentido de que éstos debieron de ser cualquier cosa, pero no “reptiles” en su conducta, en sus reacciones y en su forma de vida. Este dinosaurio tuvo que ser un animal de carrera rápida, altamente predador, extremadamente ágil y muy activo, sensible a muchos estímulos y rápido en sus reacciones de respuesta.

Esto, a su vez, indica un nivel de actividad poco corriente para un reptil y sugiere la existencia de un ritmo metabólico alto. Las pruebas en favor de esa teoría radican principalmente, aunque no de modo exclusivo, en el pie».

 Es bien sabido, observó Ostrom, que los peces, los anfibios y los reptiles modernos son lo que se ha dado en llamar animales de sangre fría. El término «sangre fría» significa que la temperatura del animal fluctúa de acuerdo con la del ambiente que lo rodea. El animal de sangre fría carece de un mecanismo interno que le permita elevar o descender su temperatura muy por encima o por debajo de la ambiental.




 La mayor parte de los reptiles están inactivos en el frío de la noche y tienen que esperar a que salga el sol para calentarse y conseguir energías para la caza cotidiana. Puesto que su principal fuente de calor es externa, los reptiles y otros de los llamados animales de sangre fría son ectotermos. Cuando los ectotermos comienzan a estar demasiado calientes, tienen que buscar la sombra.

 Siempre dependen de la temperatura y deben actuar de acuerdo a sus fluctuaciones. En contraste, los animales de sangre caliente, mamíferos y aves, tienen mecanismos internos de regulación de la temperatura corporal, que mantienen aproximadamente al mismo nivel, con independencia de las condiciones externas. Estos animales son conocidos como endotermos.

Los seres humanos, salvo en casos de enfermedad, mantienen una temperatura de 37,1 grados centígrados. La mayor parte de los otros mamíferos operan a temperaturas comparables, mientras que las aves tienen, por lo general, temperaturas algo más elevadas, en torno a los 40 grados centígrados.

Muchos endotermos sudan y jadean para ayudarse a rebajar la temperatura y mantenerse frescos o tienen capas de pelo o de plumas para evitar la pérdida del calor corporal.

Pero el mecanismo principal de la endotermia es un metabolismo básico elevado. Todas las células vivas generan una pequeña cantidad de calor como producto secundario de los procesos químicos que se dan en su interior, y en los mamíferos y las aves ese proceso, conocido como metabolismo, es al menos cuatro veces superior en actividad a los ectotermos de cuerpo y temperaturas comparables.

Como consecuencia los endotermos pueden ponerse en acción en casi cualquier condición climatológica, mientras que los ectotermos están gravemente influenciados y limitados por las condiciones ambientales que los rodean.

Es esta dependencia climática de los ectotermos, dijo Ostrom, la que hace a estos animales muy útiles para la interpretación paleoclimatológica. Si los dinosaurios eran ectotermos, de acuerdo con las anteriores presunciones, entonces los millones de años durante los cuales vivieron debieron de ser tiempos de un clima suave a extensión mundial.

Sólo en un medio ambiente suave y equilibrado, sin grandes altibajos, esos reptiles pudieron haber prosperado en tal número y en lugares que al parecer se extendían por toda la Tierra, hasta el límite de las regiones polares. Se puede presumir que no hubieran soportado cambios estacionales extremos.

Sin embargo, aunque el hallazgo de polen y de fósiles invertebrados tiende a apoyar la idea de que el mesozoico se caracterizó por una climatología suave, Ostrom arguye que los paleontólogos no deben recurrir a los dinosaurios para corroborar esa evidencia.

Afirmó que los dinosaurios son inútiles como indicador termal, porque hay motivos para cuestionar la presunción de que su metabolismo era reptiliano, es decir, su ectotermia. Ostrom declaró: «Hay pruebas considerables e impresionantes, si no decisivas, de que muchos tipos de los antiguos reptiles se caracterizaban por poseer un nivel de metabolismo comparable al de los mamíferos o las aves».

El Deinonychus y, aparentemente, muchos otros dinosaurios, al igual que hacen los bípedos o los cuadrúpedos, se mantenían erectos con los pies directamente bajo el cuerpo y no extendidos y despatarrados por fuera, como es característico en los reptiles actuales.

Ningún ectotermo vivo tiene una postura semejante. Si fuera así estarían en condiciones de correr con mayor rapidez y recorrer mayores distancias de lo que lo hacen. Al menos algunos dinosaurios eran ligeros de pies.

Las largas extremidades del Deinonychus, y de algunos otros dinosaurios, a deducir de lo que indican sus fósiles, fueron rápidos corredores. «La evidencia parece indicar -dijo Ostrom- que la postura y la locomoción erectas probablemente no son posibles sin un metabolismo elevado y una alta y uniforme temperatura corporal».

Con ello no afirma claramente que los dinosaurios fueran animales endotermos. Podían haber sido, también, homeotermos, es decir, capaces de mantener una temperatura corporal constante por cualquier otro método, externo o interno.

Tanto si eran homeotermos como, posiblemente, endotermos, afirma Ostrom, lo cierto es que los dinosaurios fueron unos animales extremadamente activos, cuyos mecanismos bioenergéticos los apartaban, al parecer, del mundo de los reptiles corrientes. Muchos paleontólogos encontraron inaceptable la idea de que los dinosaurios fuesen animales de sangre caliente.

Otros, por el contrario, la encontraron liberadora, puesto que ofrecía un modelo de fisiología del dinosaurio que podía explicar su prolongado éxito y, posiblemente, incluso su extinción. La reconstrucción de la fisiología térmica de los animales extinguidos no es asunto fácil. En los fósiles no hay nada que aporte información sobre cómo regulaban los dinosaurios la temperatura de sus cuerpos.

Todas las pruebas aportadas en favor o en contra de la hipótesis endotérmica están derivadas de las deducciones científicas extraídas de los huesos de los dinosaurios. Los resultados han sido sorprendentes. Distintas interpretaciones de los mismos huesos producen hipótesis y suposiciones en conflicto.

La observación microscópica de los huesos del dinosaurio aporta pruebas que parecen apoyar las ideas de Ostrom. Ya en 1957 los paleontólogos se mostraron extrañados cuando encontraron en los huesos de los dinosaurios una red de delgados vasos sanguíneos (conductos de Havers) penetrantes destinados a aportar al tejido óseo cantidad abundante de sangre rica en nutrientes.

Estos huesos con una red de delgados vasos sanguíneos son capaces de un crecimiento rápido y son indicadores, además, de la existencia de un nivel de metabolismo elevado.

En 1968, Armand de Ricqles, un anatomista y paleontólogo de la Universidad de París, comenzó a informar de los resultados de estudios más detallados de los tejidos óseos y llegó a la conclusión de que aquel denso tejido de conductos de Havers indicaba «niveles de intercambio de fluidos hueso-cuerpo que, al menos, se aproximaban al de los grandes mamíferos vivos en la actualidad».

Esto, en principio, parece ser la prueba más directa que sugiere, como dice Ricqles, «altos niveles de metabolismo y, en consecuencia, la endotermia entre los dinosaurios».

Ostrom continuó basando sus hipótesis en el hecho de que la postura erecta y el modo de andar que de ella se deriva sólo se da en animales endotérmicos, mamíferos y aves. Pero reconoce que las críticas que se le hacen tienen un punto de razón cuando arguyen que no existe una relación de causa-efecto entre la postura y la fisiología, ni nunca fue establecida.

Sin embargo, insiste, «la correlación entre postura y endotermia o ectotermia es, virtualmente, absoluta y seguramente no se trata de una mera coincidencia». Adelanta otra línea de evidencia indirecta relacionada con la postura erguida.

Citando las investigaciones de Roger S. Seymour, un zoólogo de la Universidad de Adelaida, en Australia, Ostrom observa que la mayor distancia vertical entre el corazón y el cerebro de un animal requiere una presión sanguínea mayor. La presión sanguínea de la jirafa es doble de la del ser humano.

En el caso delBrachiosaurus, para tomar un ejemplo extremo entre los dinosaurios, la distancia entre el corazón y el cerebro era de aproximadamente seis metros. Para bombear sangre a esa distancia, e incluso a otras notablemente menores, en un animal con postura erguida, dice Ostrom, se requeriría un corazón de cuatro ventrículos, muy avanzado, lo que constituye una característica de los animales endotérmicos.

Owen, en 1841, se preguntó si no era posible que los dinosaurios hubieran tenido un corazón de cuatro ventrículos, pero no siguió investigando en este sentido. Los cocodrilos tienen una versión imperfecta de este corazón de cuatro ventrículos, lo que parece indicar que no puede desecharse esa versión en los saurios primitivos.

La distancia cerebro-corazón no prueba que los dinosaurios fueran endotermos, como observa Seymour, pero ayuda a pensarlo así el hecho de que muchos de ellos tenían necesidad de un corazón y un sistema circulatorio capaz de mantener una fisiología endotérmica.

En contraste con las precavidas deducciones de Ostrom y sus concesiones a la crítica, un antiguo discípula, Robert Bakker, afirmó que la hipótesis en favor de la endotermia de los dinosaurios era decisivo. Los animales de sangre caliente pagan un alto precio por el metabolismo que los mantiene en un estado constante de disposición a la acción.

Tienen que comer más y eso significa tener que pasarse más tiempo pastando o cazando. Un león consume su peso en alimentos cada siete o diez días, mientras que el dragón de Komodo, un lagarto carnívoro, come su peso en alimentos sólo cada sesenta días. Esto significa que una determinada cantidad de carne podrá alimentar a un mayor número de carnívoros ectotérmicos que endotérmicos.

Consecuentemente Bakker estableció la relación entre las poblaciones de presas y de carnívoros depredadores, tal y como se mostraba en los fósiles de finales del cretáceo. Examinando varias colecciones de fósiles, separando los predadores de sus presas por los dientes y maxilares y calculando el probable peso del cuerpo, Bakker intentó determinar el porcentaje de predadores en la totalidad de población fósil. 

No hay comentarios:

Publicar un comentario

Related Posts Plugin for WordPress, Blogger...