viernes, 10 de mayo de 2019

Fue Nikola Tesla Un Viajero Del Tiempo Que Vino Del Futuro? ( III )

Cuando Einstein tenía cuatro años, su padre le mostró una brújula. Al niño le pareció un milagro y esto motivó su interés por la ciencia.

Entre los doce y los dieciséis años, el futuro genio aprendió por su cuenta geometría euclidiana y cálculo integral y diferencial. 

Era un muchacho brillante y, más importante aún, con ideas propias, que pronto quedó cautivado por la teoría del electromagnetismo de James Clerk Maxwell, la teoría científica más apasionante de la época. 

Los científicos conocían desde hacía tiempo la existencia de dos tipos de carga eléctrica, positiva y negativa. Por ejemplo, los protones tienen carga positiva y los electrones, negativa. Las cargas positiva y negativa se atraen mutuamente, mientras que las del mismo tipo se repelen. Además, los científicos sabían que las cargas pueden ser estáticas o hallarse en movimiento.

Las cargas estáticas producen interacciones eléctricas del tipo de las que observamos en la llamada electricidad estática. Las cargas en movimiento no sólo generan estos efectos, sino que también producen interacciones magnéticas, como cuando las cargas que se mueven a lo largo de un cable dan lugar a un electroimán.




Maxwell pronto hallaría una extraordinaria solución para sus ecuaciones. Se trataba de una onda electromagnética, una combinación de campos eléctricos y magnéticos, viajando a través del vacío a la velocidad de la luz, una magnitud que los astrónomos ya habían medido en aquella época.

Ya en el año 1676, el astrónomo danés Olaus Roemer había observado meticulosamente los satélites de Júpiter. Tras comprobar que orbitaban alrededor del planeta como las manecillas de un sofisticado reloj, Roemer constató que cuando la Tierra se hallaba en su punto más cercano a Júpiter, ese «reloj» parecía adelantar ocho minutos, mientras que cuando se hallaba en el punto más lejano, en el extremo opuesto de su órbita, el «reloj» parecía retrasar los mismos ocho minutos.

 La diferencia entre los dos resultados estaba motivada por los dieciséis minutos más que debía recorrer la luz para alcanzar la Tierra cuando ambos planetas estaban situados en su posición más alejada, atravesando una distancia extra, el diámetro de la órbita terrestre, que ya había sido determinada entonces mediante técnicas de medición astronómica.

Roemer llegó a la conclusión de que la luz se movía a doscientos setenta mil kilómetros por segundo. En 1728, el astrónomo inglés James Bradley midió la velocidad de la luz empleando el mismo efecto que hace que la lluvia que cae verticalmente parezca hacerlo de manera oblicua cuando es observada desde un vehículo en movimiento.

A partir de las desviaciones ligeramente cambiantes de la luz de las estrellas, observadas a lo largo de un año, a medida que la Tierra rodea el Sol, Bradley dedujo que la velocidad de la luz era unas diez mil veces mayor que la de la Tierra en su órbita, es decir, de unos trescientos mil kilómetros por segundo.

Así pues, Maxwell conocía la velocidad de la luz. Y cuando en 1873 calculó la velocidad de sus ondas electromagnéticas y observó que viajaban a trescientos mil kilómetros por segundo, concluyó que la luz tenía que ser una onda electromagnética.

Se trataba de uno de los mayores descubrimientos de la historia de la ciencia. Maxwell también dedujo que las ondas electromagnéticas podían tener diferentes longitudes de onda y predijo que algunas de éstas podrían ser más cortas o más largas que las correspondientes a la luz visible

. Entre las primeras se hallarían los rayos gamma, los rayos X y los ultravioleta, mientras que entre las segundas estarían la radiación infrarroja, las microondas y las ondas de radio. Inspirado directamente por los resultados de Maxwell, en 1888 Heinrich Hertz logró transmitir y recibir ondas de radio, lo que constituyó la base para este invento. La obra de Maxwell fascinaba a Einstein, pero sus ecuaciones contradecían el aspecto que él había previsto para aquel rayo de luz junto al que se imaginaba viajando a la misma velocidad.

En su visión, la onda electromagnética parecía estacionaria respecto a él, una onda estática con crestas y valles como surcos en un campo arado. Las ecuaciones de Maxwell no permitían ese fenómeno estático en el vacío, así que algo estaba equivocado. Einstein se dio cuenta de algo más, Supongamos que desplazamos rápidamente una partícula cargada ante un imán inmóvil. Según Maxwell, la carga en movimiento se vería acelerada por una fuerza magnética.

Dejemos quieta la carga y movamos ahora el imán. Conforme a las ecuaciones de Maxwell, el campo magnético variable producido por el imán en movimiento crearía un campo eléctrico, produciendo una aceleración en la carga debido a una fuerza eléctrica. La física involucrada en cada caso sería totalmente distinta y, sin embargo, la aceleración resultante sobre la partícula cargada sería idéntica en ambos. Einstein tuvo entonces una idea audaz.

 Pensó que la física tenía que ser la misma en ambos casos, puesto que la única relación entre la partícula cargada y el imán resultaba ser la velocidad relativa de uno con respecto al otro. En la historia de la ciencia, muchos grandes avances se han producido cuando alguien se ha percatado de que dos situaciones que hasta entonces se creían diferentes son en realidad la misma.

Aristóteles pensaba que la gravedad afectaba a la Tierra haciendo que los objetos cayeran hacia ella, pero que eran otras las fuerzas que operaban en los cielos y hacían que los planetas se movieran y la Luna girara alrededor del nuestro.

Sin embargo, Newton comprendió que la fuerza que hacía caer a una manzana era la misma que mantenía a la Luna en su órbita. Se dio cuenta de que la Luna estaba «cayendo» continuamente hacia la Tierra, pues la trayectoria en línea recta que nuestro satélite hubiera seguido en el espacio en caso contrario se hubiera visto continuamente curvada para formar un círculo. Una idea que en absoluto era obvia.

Había otra cosa sobre la luz que resultaba muy peculiar. Supongamos que la Tierra se moviera a través del espacio a 100.000 kilómetros por segundo. Un rayo de luz que nos adelantara viajando en el mismo sentido que ella, ¿se alejaría de nosotros a sólo 200.000 kilómetros por segundo, es decir, 300.000 km/s de la luz menos 100.000 km/s de la Tierra?

Y si el rayo viajara en sentido opuesto, ¿lo veríamos alejarse a 400.000 kilómetros por segundo (es decir, 300.000 más 100.000)? El hecho es que la luz se aleja siempre de la Tierra a la misma velocidad, con independencia del sentido en el que viaje.

En 1887, el físico Albert Michelson, del Instituto Case de Ciencias Aplicadas de Cleveland, y el químico Edward Morley, de la vecina Westem Reserve University, comprobaron este extremo dividiendo un haz de luz, de modo que una mitad fuera hacia el norte y la otra, hacia el este. Sendos espejos reflejaban después cada uno de los haces, devolviéndolos al punto de origen.

 Michelson y Morley pensaron que si la luz se desplazaba a través del espacio a 300.000 kilómetros por segundo y su aparato se movía, también en el espacio, a 30 kilómetros por segundo, la velocidad de la Tierra en su órbita alrededor del Sol, la velocidad de la luz respecto a su aparato sería de 300.000 kilómetros por segundo más/menos 30 kilómetros por segundo, dependiendo de si el haz viajaba en paralelo o en sentido contrario al movimiento de la Tierra.

Estimaron que el haz de luz que iba y venía en la dirección paralela a la del movimiento de la Tierra debía llegar retrasado con respecto al que hacía el recorrido en una dirección perpendicular. Sin embargo, su experimento mostró de manera muy precisa que los dos haces llegaban siempre a la vez. Es fácil imaginar la enorme sorpresa para ambos científicos.

Después de confirmar la precisión de su aparato, se preguntaron si la velocidad de la Tierra alrededor del Sol en el momento de hacer el experimento podría haberse visto cancelada por algún movimiento en sentido contrario del sistema solar en su conjunto.

Motivo por el cual repitieron la prueba seis meses más tarde, cuando la Tierra se estaba moviendo en sentido opuesto en su órbita alrededor del Sol. Según su hipótesis, en la segunda ocasión deberían estar moviéndose a través del espacio a sesenta kilómetros por segundo, pero los resultados fueron idénticos.

Con toda esta valiosa información en sus manos, en 1905 Einstein formuló dos sorprendentes postulados.

El primero implicaría que los efectos de las leyes físicas deben resultar iguales para cualquier observador sujeto a movimiento uniforme, si estuviese viajando a velocidad constante a lo largo de una dirección constante, sin que existan giros.

El segundo postulado indicaría que la velocidad de la luz en el vacío tiene que ser la misma para cualquier observador en movimiento uniforme. De entrada, estos postulados parecen contradecir el sentido común.

En efecto, ¿cómo puede un rayo de luz alejarse de dos observadores a la misma velocidad si estos observadores se mueven uno respecto a otro? Sin embargo, Einstein demostró muchos teoremas basados en esos dos postulados y los numerosos experimentos realizados desde entonces han confirmado su validez. Einstein probó sus teoremas ideando diversos e ingeniosos experimentos mentales. Denominó sus trabajos «teoría especial de la relatividad». Especial porque estaba restringida a observadores en movimiento uniforme, y relatividad porque mostraba que sólo cuentan los movimientos relativos.

Nunca antes alguien había hecho algo similar en la ciencia. Pero, ¿cómo llegó Einstein a sus conclusiones? Sin duda algo tuvo que ver su reverencia por lo que él llamaba el «sagrado» libro de geometría, un volumen que llegó a sus manos cuando tenía doce años. El libro describía cómo el matemático griego Euclides había observado que se podían demostrar numerosos teoremas notables a partir de unos postulados que definen puntos y líneas y las relaciones entre ambos.

A Einstein le produjo una gran impresión esa metodología. Se trataba simplemente de adoptar un par de postulados y ver qué se podía demostrar con ellos. Si nuestro razonamiento es sólido y nuestros postulados son ciertos, todos nuestros teoremas deberán resultar ciertos también. Pero ¿por qué Einstein adoptó esos dos postulados en concreto?




Sabía que la teoría de la gravitación de Newton respondía al primer postulado. Según dicha teoría, la fuerza de gravitación entre dos objetos depende de las masas de ambos y de la distancia que los separa, pero no de la velocidad a la que se estén moviendo estos objetos. Newton asumía la existencia de un estado de reposo, pero no hay modo alguno de determinar, mediante un experimento gravitatorio, si el sistema solar está en reposo o no.

 Según las leyes newtonianas, los planetas rodearían el Sol de igual modo tanto si el sistema solar fuera estacionario, en reposo, como si estuviera en movimiento rápido uniforme. Einstein decía que, como no puede ser medido, ese estado único de reposo simplemente no existe. Cualquier observador que se desplace con movimiento uniforme puede afirmar con todo derecho que su situación es estática.

Y si la gravitación no puede establecer un estado único de reposo, pensaba Einstein, ¿por qué iba a ser distinto para el electromagnetismo? Basándose en su razonamiento sobre la partícula cargada y el imán, Einstein concluyó que lo único que contaba era la velocidad relativa entre ambos.

A partir de la interacción entre imán y partícula, nadie podría decidir cuál de los dos se hallaba «en reposo». Einstein basó su segundo postulado en el hecho de que las ecuaciones de Maxwell predicen que, en el vacío, las ondas electromagnéticas se propagan a trescientos mil kilómetros por segundo. Si estuviéramos «en reposo», la luz nos rebasaría a esa velocidad.

Si viéramos pasar un rayo de luz a cualquier otra velocidad, sería la evidencia de que no nos hallamos «en reposo». De hecho, Michelson y Morley trataron de utilizar esta idea para demostrar que la Tierra no se halla «en reposo», pero su experimento falló. Einstein pensó que todo observador sometido a movimiento uniforme debería poder considerarse a sí mismo «en reposo» y, por lo tanto, ver pasar el rayo de luz a trescientos mil kilómetros por segundo.

El segundo postulado de Einstein significa que un observador que viaje a una alta velocidad y realice el experimento de Michelson-Morley fracasará en el intento, Preguntado años después, Einstein admitió haber tenido conocimiento del famoso experimento en 1905, pero afirmaba que no había ejercido excesiva influencia en sus razonamientos. Él había asumido, simplemente, que todo intento en ese sentido fracasaría.

En cualquier caso, hoy podemos decir que el experimento de Michelson-Morley quizá constituyó la prueba más concluyente de que el segundo postulado de Einstein era correcto. Einstein comprendió que la luz podía parecer que viajaba siempre a la misma velocidad para observadores que se movieran a distintas velocidades relativas, sólo si sus relojes e instrumentos de medida diferían.

Si un astronauta que viajara a una gran velocidad tuviese instrumentos y relojes diferentes de los míos, tal vez al medir la velocidad de un rayo de luz ambos obtendríamos un valor de trescientos mil kilómetros por segundo.

El espacio-tiempo es como una barra de pan. Si corto el pan horizontalmente, tendré rodajas que representan diferentes instantes de tiempo terrestre. Dos sucesos serán simultáneos si se hallan en la misma rebanada. Pero un astronauta en movimiento cortará el pan de otra manera, inclinando el cuchillo.

 Los sucesos que estén en una misma rodaja inclinada serán simultáneos para él. Esto explica también por qué el astronauta y nosotros discrepamos sobre la longitud de la nave. Simplemente estamos cortando su línea de universo tetradimensional de manera diferente. Es como si nos preguntásemos por el grosor de un tronco de árbol. V

isto en dirección radial, tendremos una respuesta, pero si lo miramos bajo un cierto ángulo, obtendremos otra. Si un astronauta atravesara el sistema solar al 99,995% de la velocidad de la luz, observaríamos que el ritmo de sus relojes es la centésima parte del de los nuestros y que la longitud de su nave se ve reducida en el mismo factor.

Supongamos que se dirige a la estrella Betelgeuse, a unos quinientos años luz de la Tierra. Como viaja casi a la velocidad de la luz, tardaría en llegar algo más de quinientos años. Pero como sus relojes avanzan mucho más despacio que los nuestros, le veríamos envejecer sólo cinco años durante el viaje. Cuando llegue a Betelgeuse será sólo cinco años mayor que cuando pasó por aquí. Pero ¿qué es lo que experimenta el astronauta?

El se considera en reposo. Ve que el Sol y Betelgeuse se mueven respecto a él al 99,995% de la velocidad de la luz, con lo que, al medir la separación entre ambas estrellas, obtiene sólo cinco años luz, la centésima parte de la distancia que mediríamos nosotros. El Sol y Betelgeuse son como el morro y la cola de una «nave» que pasa junto a él a una velocidad próxima a la de la luz. Al medir su longitud, ésta resulta ser cinco años luz.

 Es decir, la cola de la «nave» -Betelgeuse- pasa ante él unos cinco años después de haberlo hecho el Sol, con lo que al llegar a su destino es sólo cinco años más viejo, tal como estaba previsto. Curiosamente, en los experimentos mentales de Einstein no había gente en la Tierra que observara a un astronauta viajando en una nave espacial.

En lugar de ello, el gran físico analizaba el caso de un observador situado en una estación de ferrocarril que compara sus anotaciones con otro ubicado en el centro de un tren que se mueve rápidamente. Einstein empleaba un tren porque era el vehículo más rápido de los existentes en 1905.

Si una nave se nos acercara a una velocidad mayor que la de la luz, una señal luminosa enviada hacia delante por el astronauta nunca alcanzaría el morro del aparato, ya que éste se mueve más deprisa y, además, le lleva ventaja.

 Cualquier atleta sabe que es imposible alcanzar a otro que corre más rápido y que lleva una distancia de ventaja inicial.

Lo observado por el astronauta sería muy peculiar. Tomaría una linterna y la dirigiría hacia la parte delantera de la nave, pero nunca llegaría a ver cómo ésta se ilumina.

 Esto no es lo que vería un observador en reposo. Por lo tanto el astronauta sabría que se está moviendo, lo cual contradice el primer postulado. Así pues, supuestamente nada puede viajar más rápido que la luz. Einstein había descubierto un límite de velocidad en el cosmos: la velocidad de la luz.

Forma parte del tejido del universo, ya que subyace en las ecuaciones de la electrodinámica. Este límite de velocidad proviene directamente de los dos postulados de Einstein, que damos por válidos ante la gran cantidad de resultados derivados que se han verificado.

 En los aceleradores de partículas más potentes, donde podemos incrementar a voluntad la velocidad de los protones, conseguimos que cada vez vayan más deprisa, aproximándose más y más a la velocidad de la luz, pero sin alcanzarla nunca, exactamente como Einstein predijo.

 De todos modos en ciencia nunca podemos afirmar que algo es imposible de alcanzar o superar. E = mc2 es otro resultado que Einstein demostró a partir de sus dos postulados (E representa la energía, m, la masa y c es el cuadrado de la velocidad de la luz). Ni que decir tiene que la velocidad de la luz es una magnitud enorme, y su cuadrado, mucho más, con lo que la pérdida de una mínima cantidad de masa produce la liberación de una gigantesca cantidad de energía.

Cuando la bomba atómica hace explosión, una pequeña cantidad de masa es transformada en una ingente cantidad de energía. La bomba atómica funciona, luego podemos decir que los postulados parecen ciertos. Por ello no parece fácil que veamos a un astronauta viajar a una velocidad superior a la de la luz.

Vivimos en un universo tetradimensional. O sea, existen tres dimensiones espaciales y una temporal. H.G. Wells pensaba que la dimensión tiempo era exactamente igual a cualquiera de las dimensiones espaciales, pero se equivocaba. Hay una diferencia crucial entre ellas. Resulta que, matemáticamente, la dimensión tiempo lleva asociada un signo menos.

Este pequeño signo marca la diferencia, ya que separa el futuro del pasado, permite la causalidad en nuestro mundo y dificulta viajar libremente en el tiempo. Así que para explorar la idea del viaje en el tiempo, es necesario entender de dónde viene ese signo menos, lo cual requiere considerar, a su vez, en qué coincidirán los observadores en movimiento, ya que habrá muchos otros aspectos en los que no estarán de acuerdo.

Consideremos el ejemplo ya conocido. Un astronauta pasa ante nosotros al 80% de la velocidad de la luz. Envía señales luminosas hacia la parte anterior y posterior de su nave, donde un par de espejos las reflejan, enviándolas de vuelta hacia él. Observamos que el envío y la recepción de estas señales son dos sucesos separados en el espacio y en el tiempo.

Mientras tanto, el astronauta, que se percibe a sí mismo en reposo, ve dos sucesos separados en el espacio y en el tiempo, según marcan sus relojes. Está claro, pues, que hay discrepancias sobre la separación entre los dos sucesos, tanto en el espacio como en el tiempo. Supongamos un congreso celebrado en Alfa Centauro hace seis años.

El suceso está en nuestro «pasado». Un astronauta podría haber asistido a dicho congreso y encontrarse tomando café con nosotros en este momento. Podría haber regresado a la Tierra a dos terceras partes de la velocidad de la luz. El congreso se halla, pues, en el «pasado» de donde nos encontramos actualmente.

De este modo podemos dividir nuestro universo tetradimensional en tres regiones: el pasado, el presente y el futuro. No está nada mal que dispongamos de tres dimensiones espaciales y una temporal. Podríamos, por ejemplo, haber ido a parar a un universo que tuviera sólo dos dimensiones en el espacio y una en el tiempo.

Así sería el mundo de Planilandia, descrito por Edwin Abbott en un precioso libro editado en 1880 y actualizado después por A. Dewdney en su obra Planiverso. Las criaturas de Planilandia sólo se pueden mover en dos dimensiones espaciales, «arriba-abajo» e «izquierda-derecha».

Un planilandés tendría una visión de la vida muy diferente de la nuestra. Poseería boca y estómago, pero ningún conducto alimentario que atravesara todo su cuerpo.

 Los planilandeses tendrían que digerir la comida y luego vomitar los residuos, como observó Hawking en su Historia del tiempo. Un planilandés podría ver mediante un ojo circular y leer un periódico que consistiera en una línea con una especie de código Morse.

Podría tener una casa con puerta y ventana e, incluso, una piscina en el jardín, pero debería trepar al tejado para llegar a ese jardín y arrojarse de espaldas para acostarse en la cama. La vida en un universo con dos dimensiones espaciales y una temporal sería mucho más limitada que en el nuestro.

Un mundo con una única dimensión espacial y otra temporal, Linealandia, sería aún más simple. Los seres de Linealandiaserían segmentos de línea. Podría haber un rey y una reina en Linealandia. El rey podría estar, por ejemplo, a la derecha de la reina. Si hubiera un príncipe y una princesa estarían, respectivamente, a la derecha del rey y a la izquierda de la reina.

Si ésta se encontrara a nuestra izquierda, siempre permanecería allí, nunca podría rodeamos para situarse a nuestra derecha. EnLinealandia, izquierda y derecha representan una separación absoluta, como la que existe entre pasado y futuro. La razón por la que existen tres dimensiones espaciales y una temporal puede provenir del modo en el que opera la gravedad. Para Einstein, la gravedad nace la curvatura provocada por la masa en el espacio-tiempo.

Cuando generalizamos la teoría de Einstein de la gravitación a espacio-tiempos de varias dimensiones, constatamos que los objetos masivos de Planilandia no se atraen unos a otros. No existe atracción gravitatoria a distancia y nada haría que el agua de la piscina de nuestro planilandés se mantuviera en su sitio.




De modo que los objetos grandes no se ensamblarían a ellos mismos y la vida inteligente no se podría desarrollar, por lo que la vida inteligente en Linealandia resultaría también imposible.

Pero con tres dimensiones espaciales y una dimensión temporal, los planetas tienen órbitas estables alrededor de sus soles. Si hubiera más de tres dimensiones espaciales con una sola dimensión temporal, dichas órbitas se volverían inestables, lo que, de nuevo, daría lugar a condiciones desfavorables para la vida inteligente. Supongamos que hubiera dos dimensiones temporales. Por ejemplo, la antigua cultura indígena australiana habla de un segundo tiempo, el «tiempo del sueño». Si existiera, el universo sería pentadimensional.

Como el signo de los términos asociados a ambas dimensiones temporales es el mismo, podríamos girar en el plano tiempo ordinario-tiempo del sueño del mismo modo que lo hacemos en el plano formado por las dimensiones izquierda-derecha y delante-detrás.

 Esto facilitaría el viaje al pasado. Podríamos visitar un suceso en nuestro pasado sólo con viajar, haciendo que nuestra línea de universo efectuara un bucle en la dirección del tiempo del sueño, sin superar en ningún momento la velocidad de la luz.

Si el tiempo es unidimensional, sólo podremos avanzar hacia delante, como una hormiga sobre un hilo, pero si hubiera dos dimensiones temporales, el tiempo ordinario y el tiempo del sueño, podríamos dar la vuelta en el plano que forman y visitar cualquier lugar del tiempo, como una hormiga sobre una hoja de papel. La causalidad normal no existiría en un mundo así. Según parece, no vivimos en esa clase de mundo.

Pero nuestro universo puede tener más dimensiones de las que pensamos en un primer momento.

En 1919, Theodor Kaluza descubrió que al generalizar la teoría de la gravitación de Einstein a un universo de cuatro dimensiones espaciales y una dimensión temporal, se obtenía la gravedad einsteiniana normal más las ecuaciones de Maxwell de la electrodinámica, corregidas según la teoría especial de la relatividad.

 El electromagnetismo simplemente tendría su causa en la acción de la gravedad en una dimensión espacial extra,

Como nadie ve esa dimensión adicional por ninguna parte, la idea pareció descabellada en su día. No obstante, en 1926, Oskar Klein, un matemático, tuvo una idea. La dimensión adicional podría estar arrollada como el contorno de una pajita para sorber refrescos. Una pajita para beber refrescos tiene una superficie bidimensional.

Podemos fabricar una cortando una tira de papel y pegando los bordes largos para obtener un cilindro estrecho. Para ubicar un punto en la pajita hacen falta dos coordenadas: la posición vertical a lo largo de la pajita y la posición angular sobre la circunferencia.

Las criaturas que vivieran sobre una superficie así habitarían en realidad en unaPlanilandia bidimensional. Pero si la circunferencia fuera lo suficientemente pequeña, su universo parecería más bienLinealandia.

Klein sugirió que la cuarta dimensión espacial podría estar arrollada como la circunferencia de una pajita de sorber refrescos, en la que su perímetro sería tan reducido que no podríamos apreciarla. En este universo las partículas con carga negativa, como el electrón, circularían alrededor de la pajita en el sentido de las agujas del reloj, mientras que las de carga positiva, como el protón, lo harían en sentido contrario.

Las partículas neutras (como el neutrón) no rodearían la pajita. La naturaleza ondulatoria de las partículas sólo permitiría rodear la diminuta circunferencia a un número entero (1, 2, 3, 4, etcétera) de longitudes de onda, con lo que las cargas eléctricas serían múltiplos de una carga fundamental, la del protón y el electrón.

La teoría de Kaluza-Klein unificaba así las fuerzas de la gravedad y el electromagnetismo, y las explicaba en el marco de un espacio-tiempo curvo, lo que representó un importante paso hacia el objetivo anhelado por Einstein de una gran teoría del campo unificado que explicara todas las fuerzas del universo. Pero la teoría no proporcionaba nuevas predicciones de efectos que pudieran ser verificados experimentalmente, motivo por el cual quedó en vía muerta.

Recientemente, sin embargo, la teoría de supercuerdas ha resucitado la idea de las dimensiones adicionales. La teoría propone que las partículas fundamentales, como los electrones y los quarks, son en realidad diminutos bucles de cuerdas con un perímetro en el margen de los 10 a 33 centímetros.

La teoría de supercuerdas sugiere que nuestro universo tiene en realidad once dimensiones: una dimensión temporal y tres dimensiones espaciales, todas ellas macroscópicas, junto con siete dimensiones espaciales hechas un ovillo de 10 a 33 centímetros de circunferencia.

Una de las dimensiones adicionales podría explicar la electrodinámica, como en la teoría de Kaluza-Klein, y las otras explicarían las fuerzas nucleares débil y fuerte, responsables de ciertos tipos de desintegración radiactiva y de mantener unido el núcleo atómico.

Al igual que toda posición a lo largo de la dimensión vertical de la pajita de refresco no es un punto, sino un pequeño círculo, en nuestro universo todo punto del espacio sería en realidad un diminuto y complejo espacio heptadimensional de 10 a 33 centímetros de circunferencia.

 La forma exacta de este espacio, ya sea una esfera, un donut o una rosquilla hiperdimensional, determinaría la naturaleza de la física de partículas que observamos. En el universo primitivo, nuestras familiares tres dimensiones espaciales también podrían haber sido microscópicas.

 Desde entonces se habrían expandido enormemente en tamaño y continuarían haciéndolo aún, lo que explicaría la expansión del universo que observamos.

Pero, ¿por qué se expandieron sólo tres dimensiones espaciales y las demás continuaron siendo diminutas? Como explica Brian Greene en su libro El universo elegante, publicado en 1999, el físico de la Universidad de Brown, Robert Brandenberger, y el físico de Harvard, Cumrun Vda, sugirieron que las dimensiones arrolladas siguen siendo pequeñas porque las envuelven bucles de cuerdas, a modo de gomas elásticas alrededor de una pajita de refrescos.

Brandenberger y Vda han propuesto escenarios en los que las colisiones entre bucles de cuerdas «desempaquetarían» habitualmente tres dimensiones espaciales, lo que permitiría su expansión a gran escala.

Si el número de dimensiones expandidas fuera menor o mayor que tres, esto daría lugar a Linealandia, Planilandia o a universos macroscópicos de cuatro a diez dimensiones, cada uno con leyes físicas microscópicas diferentes. Ante un conjunto de universos así, debemos pensar que nos hallamos en uno donde la vida inteligente puede florecer, del mismo modo que ocupamos un planeta habitable, cuando la mayoría de ellos se supone que no lo son. Este razonamiento, que el físico británico Brandon Carter denominó principio antrópico fuerte, es un argumento autoconsistente.

Admitiendo que somos observadores inteligentes, las leyes físicas de nuestro universo al menos deben permitir que los observadores inteligentes se desarrollen. Como observadores de esa clase, nos hallaríamos de forma natural en un universo con tres dimensiones espaciales, lo cual no impide queLinealandia, Planilandia u otros universos hiperdimensionales existan también en alguna parte.

Se ha especulado incluso sobre la posibilidad de que una de esas dimensiones extra propuestas por la teoría de supercuerdas pudiera ser de tipo temporal, como el citado tiempo del sueño de los indígenas australianos. ¿Qué aspecto tendría una dimensión temporal circular adicional? Si nos desviáramos hacia la dimensión del tiempo del sueño, regresaríamos continuamente al instante de partida, como el personaje interpretado por Bill Murray en la películaAtrapado en el tiempo, de 1993, que vivía una y otra vez el mismo día.

El plano tiempo ordinario-tiempo del sueño se parece a una pajita. El primero transcurriría a lo largo de ella y el segundo lo haría a su alrededor.

Así como una hormiga que caminara a lo largo de la pajita podría hacer un giro en U gracias a la dimensión más estrecha de la superficie sobre la que se encuentra, una partícula elemental podría realizar un giro en U en el tiempo ordinario y volver al pasado, aprovechando la dimensión tiempo del sueño para dar la vuelta. De hecho, cabría concebir un positrón como un electrón viajando hacia atrás en el tiempo.

 En la película Frequency(2000) se supone que éste es el mecanismo que emplea el protagonista para enviar señales, en este caso, fotones de ondas de radio, al pasado y salvar a su padre. Incluso el físico Brian Greene aparece fugazmente en el filme, subrayando con su presencia la física que subyace en el argumento.

No obstante, es preciso subrayar que la idea por la que una de las dimensiones arrolladas adicionales pueda ser de tipo temporal, una especie de tiempo del sueño, no es precisamente la más aceptada.

En su formulación estándar, la teoría de supercuerdas sugiere que podría haber distintos universos, con un diferente número (hasta diez) de dimensiones espaciales macroscópicas. Pero afirma que, en cualquier caso, existiría una sola dimensión temporal, una dimensión que ostenta una marca que la diferencia de las demás. Así pues, el tiempo parece ser especial en las leyes de la física y, como observó Einstein, especialmente paradójico.

En el espacio la distancia más corta entre dos puntos es la línea recta, Si al acudir a una fiesta nos desviamos para visitar a un amigo, el cuentakilómetros registrará un recorrido mayor que si hubiéramos ido a aquélla directamente.

Pero debido al signo menos asociado a la dimensión temporal, la situación es distinta cuando viajamos entre dos sucesos separados en el tiempo.

Si nos invitan a una fiesta en la Tierra dentro de diez años, el camino más directo para acudir a ella, es decir, limitarnos a permanecer en nuestro planeta y esperar, es el que consume más tics en nuestro reloj, diez años concretamente.

Si, en cambio, decidimos darnos una vuelta por Alfa Centauro y regresar a la Tierra justo para la fiesta, moveremos nuestro reloj de luz hacia atrás y hacia delante, al ir y al volver de la estrella, reduciendo la distancia que sus rayos de luz deben recorrer, con lo que necesitará menos tics para cubrirla. Como el espacio y el tiempo tienen signos opuestos, la distancia adicional recorrida en el espacio significa un menor tiempo transcurrido en nuestro reloj. Envejecemos menos.

Esto conduce a la famosa «paradoja de las gemelas», un factor clave en los viajes al futuro. Supongamos dos hermanas gemelas, María y Juana. María permanece en la Tierra. Juana viaja en una nave espacial al 80% de la velocidad de la luz hasta Alfa Centauro. Como la estrella se encuentra a cuatro años luz de distancia, el viaje de Juana durará cinco años.

 María verá cómo el reloj de Juana avanza más despacio -el 60% del ritmo al que marcha el suyo-, con lo que Juana sólo envejecerá tres años durante el viaje. Juana da la vuelta tras rodear Alfa Centauro y regresa a la Tierra al 80% de la velocidad de la luz, según las medidas realizadas por los observadores ubicados en nuestro planeta.

El viaje de vuelta también dura cinco años terrestres, por lo tanto María es diez años más vieja cuando Juana llega a casa. Durante dicho viaje, María ve de nuevo que el reloj de su hermana anda más despacio. Cuando, por fin, ambas se encuentran.

María ha envejecido diez años y, sin embargo, Juana sólo ha envejecido seis. Juana ha viajado cuatro años hacia el futuro. Esta es la paradoja: Juana podría argumentar que, según sus observaciones, fue María y no ella quien se movió al 80% de la velocidad de la luz, por lo que esperaba que su hermana fuera la más joven cuando se encontraran de nuevo.

 Y éste es el fallo en el argumento. Las dos hermanas no han tenido experiencias equivalentes. María, la que permanece en la Tierra, es un observador que se mueve a velocidad constante sin cambiar de dirección, si despreciamos la minúscula velocidad de la Tierra alrededor del Sol. María es, por lo tanto, un observador que satisface el primer postulado de Einstein. Pero Juana no es un observador que se mueve a velocidad constante sin cambiar de dirección. Para dar la vuelta cuando llega a Alfa Centauro, debe reducir su velocidad desde el 80% de la de la luz a cero y, luego, acelerar otra vez en sentido opuesto.

La línea de universo de Juana es curva, mientras que la de su hermana María es recta. Juana, un observador que experimenta aceleración positiva y negativa (frenado), no cumple el primer postulado de Einstein. Cuando Juana frena hasta detenerse e invierte su dirección en Alfa Centauro, todas sus pertenencias salen despedidas contra la parte delantera de la nave y más de una se hace añicos.

De hecho, la aceleración sería tan violenta que, en la práctica, la propia Juana podría perecer en el intento; pero a efectos de nuestra argumentación, supondremos que es una mujer lo bastante fuerte como para soportar la experiencia. Juana es plenamente consciente de haber girado.

Cuando Juana se aleja de la Tierra al 80% de la velocidad de la luz, antes de dar la vuelta, puede considerarse en reposo. Es cierto que vería el reloj de María avanzando más despacio que el suyo. Cuando llega a Alfa Centauro 3 años después, piensa que María habrá envejecido sólo 1,8 años en nuestro planeta. Juana estima que su llegada a Alfa Centauro y los 1,8 años más de su hermana son sucesos simultáneos conectados por una «rebanada en diagonal» a través del espacio-tiempo.

La rodaja está inclinada porque Juana se mueve. Recordemos que María y Juana disentirán sobre si los rayos de luz que Juana emite llegan simultáneamente o no a los extremos de su nave. Aunque discreparán con mayor motivo sobre la simultaneidad de acontecimientos mucho más separados. De manera que, antes de que Juana llegue a Alfa Centauro, tanto ella como María pensarán que su hermana ha envejecido menos.

 Pero ahora Juana invierte el sentido de su movimiento y comienza a rebanar el espacio-tiempo con una inclinación diferente. Cuando se mueve al 80% de la velocidad de la luz hacia la Tierra, piensa que su salida de Alfa Centauro se produce al mismo tiempo que la permanencia de María en la Tierra durante 8,2 años, contados desde su partida.

En el viaje de vuelta, a velocidad constante, Juana percibiría que María envejece 1,8 años más, desde los 8,2 hasta los 10. Durante este periodo, Juana envejece otros tres años, lo que da un total de seis al llegar a casa. Juana observa que María es diez años mayor que cuando partió, mientras que ella ha envejecido sólo seis años. No hay paradoja alguna. Simplemente la idea de Juana sobre qué sucesos están ocurriendo simultáneamente en la Tierra cambia de forma radical cuando da la vuelta en Alfa Centauro. Juana acelera, María no. Juana gira, María no lo hace.

El reloj de la gemela que se aparta de su camino, la que acelera, es el que consume menos tics, En este caso, el camino recto, el que adopta María, es el equivocado. La gemela que se complica la vida envejece menos. El reloj de luz de Juana va hacia atrás y hacia delante, por lo que reduce la distancia que sus rayos de luz recorren y hace que avance menos.

La relatividad especial produce muchos resultados que en principio parecen paradójicos, pero cuyo análisis cuidadoso demuestra que las paradojas son susceptibles de ser resueltas. En este caso, cuando las hermanas se encuentran de nuevo, ambas aceptan que es Juana quien ha envejecido menos. El universo de Einstein no es tan lógico como uno espera a primera vista, pero es el universo en el que vivimos. En la novela de H.G. Wells

La máquina del tiempo, el viajero del tiempo no se sube a una nave espacial y sale disparado hacia las estrellas. Viaja al futuro sólo con sentarse en un dispositivo que a tal efecto tiene en casa. Esta clase de máquina del tiempo es también posible. Newton hizo ver que en el interior de una cápsula esférica de materia no se producirían efectos gravitatorios, algo que parece ser cierto también en la teoría de la gravitación de Einstein. Las fuerzas debidas a las diferentes porciones de masa que uniformemente nos rodean actuarían en sentidos contrarios, por lo que se cancelarían mutuamente y darían una resultante nula.

 Debido a ello, aunque la cápsula en sí sea enormemente masiva, una vez dentro no nos afectaría fuerza gravitatoria alguna. Si permaneciéramos en el exterior, cerca de la cápsula esférica, nos destrozarían las fuerzas de marea gravitatorias que genera. En el interior de la cápsula, en cambio, estaríamos a salvo. Según la teoría de la gravitación de Einstein, esas fuerzas son producidas por una curvatura o deformación del espacio-tiempo.

 Fuera de nuestra máquina, el espacio-tiempo estaría tremendamente curvado. Pero en su interior, donde no existe fuerza alguna, el espacio-tiempo sería plano. Para introducirnos en nuestra máquina del tiempo sin perecer aplastados deberíamos comenzar construyendo, poco a poco en torno a nosotros, una cápsula esférica muy grande, del tamaño aproximado de Júpiter, a fin de minimizar las fuerzas de marea que nos podrían afectar durante el proceso.

 Después tendríamos que ajustar las fuerzas que actúan sobre la cápsula para conseguir que se comprimiera lentamente a nuestro alrededor. Pero, ¿cómo podría transportarnos al futuro esa máquina?



 Einstein afirmó en 1905 que los fotones (partículas de luz) poseen energías inversamente proporcionales a su longitud de onda. Los fotones de onda corta, como los de los rayos X, contienen una gran cantidad de energía, mientras que los de onda larga, como los de las ondas de radio, transportan muy poca.

Dentro de nuestra cápsula somos como un niño atrapado en el fondo de un pozo. Estaríamos seguros en el fondo de nuestro «pozo gravitatorio», pero el desplazarse a cierta distancia fuera de la cápsula requeriría una gran cantidad de energía porque tendríamos que luchar directamente contra la atracción gravitatoria que aquélla ejerce.

¿Qué observaría el viajero del tiempo?

 Los fotones emitidos por los observadores distantes se precipitarían hacia la cápsula, por lo que adquiriría energía en su recorrido como un objeto al caer.

Cuando los fotones atraviesan las ventanas de la cápsula, contienen cuatro veces más energía que la que tenían cuando fueron emitidos. Si esos fotones tenían inicialmente una longitud de onda de 0,3 metros, el viajero los recibiría con un cuarto de 0,3 metros de longitud de onda.

 En lugar de la oscilación de 1 ciclo por nanosegundo original, registraría 4 ciclos en el mismo tiempo. El viajero, por tanto, percibiría que el reloj de los observadores distantes funciona cuatro veces más rápido que el suyo, y ante sus ojos vería pasar la historia del universo cuatro veces más deprisa de lo normal, como una película a cámara rápida.

Tanto el viajero como los observadores distantes estarían de acuerdo en que el primero envejece cuatro veces más despacio que los segundos. Tal como indicó el astrónomo Thomas Gold, de Cornell, el viajero del tiempo y los observadores distantes envejecen de forma distinta porque sus situaciones no son simétricas.

El viajero está en el fondo de un pozo gravitatorio y ellos no. La perspectiva del viajero del tiempo sería como la descrita por H.G. Wells. Vería que una vela fuera de la cápsula se consume muy deprisa, pero su llama le parecería blanquiazul en lugar de rojiza, ya que los fotones que entran en su máquina están desplazados hacia el azul, el extremo del espectro correspondiente a las longitudes de onda más cortas. De hecho, muchos de los fotones emitidos por la llama experimentarían un corrimiento hacia la región ultravioleta.

Tras envejecer cincuenta años, el viajero del tiempo podría expandir la cápsula esférica que le rodea y luego desmantelarla. Saldría de su máquina del tiempo sólo cincuenta años mayor, pero a su alrededor habrían transcurrido doscientos años.

 Si quisiéramos viajar al futuro todavía más deprisa, bastaría con contraer nuestra esfera ligeramente, llevándola más cerca aún del tamaño crítico para el que se forma un agujero negro. Pero existe un límite. El problema, según explicaban los físicos Alan Lightman, Bill Press, Richard Price y Saul Teukolsky en su libro de 1975 sobre la relatividad, es que, incluso con el material más robusto posible, existe un límite para el tamaño que puede adoptar una cápsula autosoportada sin que colapse.

 La cápsula ha de tener un diámetro al menos un 4% superior al requerido para formar un agujero negro. En este caso, el viajero del tiempo envejecería cinco veces más despacio que los de fuera. Así pues, la velocidad máxima a la que un viajero del tiempo podría trasladarse al futuro en este tipo de máquina sería de cinco años por año, y no debería acercarse demasiado a esta velocidad límite, porque si la cápsula colapsara, crearía un agujero negro.

La cápsula se comprimiría inexorablemente hasta alcanzar un tamaño inferior al de un núcleo atómico, triturando a sus ocupantes. Esta clase de máquina del tiempo no está mal si no pretendemos ir más allá de nuestro sistema solar o si sólo queremos curiosear el mundo dentro de un par de siglos y estuviésemos dispuestos a gastar cincuenta años en el empeño.

El Tao Té-King, atribuido a Lao-Tsé, dice que «un viaje de miles de kilómetros comienza siempre con un primer paso». El primer vuelo de los hermanos Wright fue de apenas cuarenta metros. La primera transmisión de radio se limitó a cruzar una habitación. tal vez ya hay viajeros del tiempo entre nosotros. El primer paso está dado. Los astronautas experimentan el efecto de envejecer un poco menos que el resto de nosotros.

Como el cosmonauta ruso Sergei Avdeyev estuvo en órbita un total de 748 días durante sus tres viajes espaciales, es alrededor de un cincuentavo de segundo más joven que si hubiera permanecido en la Tierra todo el tiempo. Esto es consecuencia de la interacción entre dos efectos. En primer lugar, un reloj en reposo con respecto a la Tierra, pero situado a la altura de la estación orbital Mir, avanzaría ligeramente más deprisa que uno que se hallara sobre la superficie terrestre.

El hecho se debe a que la Mir se encuentra más arriba en el pozo gravitatorio que es la Tierra. Pero el segundo y más importante efecto tiene su explicación en que el astronauta ha estado viajando a más de veintiocho mil kilómetros por hora y, por ello, su reloj ha funcionado más despacio que si hubiera permanecido estacionario respecto a la superficie terrestre.

 Su velocidad orbital fue el 0,00254% de la velocidad orbital de la luz. El retraso en su reloj fue muy pequeño, pero real. Avdeyev es nuestro más importante viajero del tiempo hasta la fecha. Otros astronautas han viajado también al futuro. Por ejemplo, Story Musgrave, que participó en la reparación del telescopio espacial Hubble, pasó un total de 53,4 días en órbita, con lo que es más de un milisegundo más joven que si se hubiera quedado en casa.

Los astronautas que fueron a la Luna viajaron aún más deprisa que Avdeyev, pero sus viajes duraron pocos días, por lo que el efecto total en el tiempo fue menor. Avdeyev ha viajado al futuro unos 0,02 segundos. No es mucho, pero es un paso.

 Un viaje de miles de años comienza siempre con una fracción de segundo. Si sólo queremos ver el pasado en lugar de visitarlo, el asunto es sencillo. Lo estamos haciendo todos los días debido a que la velocidad de la luz es finita. Si observamos Alfa Centauro, que está a cuatro años luz de nosotros, no la vemos como es hoy, sino como era hace cuatro años.

 De la estrella Sirio, a nueve años luz de la Tierra, contemplamos el brillo que tenía hace nueve años. Cuando observamos la galaxia de Andrómeda, que se halla a dos millones de años luz, la vemos como era hace dos millones de años, época en la que el Homo Habilis poblaba la Tierra.

Contemplamos el lejano cúmulo de galaxias Coma tal cual era hace trescientos cincuenta millones de años, cuando los anfibios empezaban a arrastrarse fuera de los océanos terrestres. El cuásar 3C273 está a más de dos mil millones de años luz de nosotros. Michael Strauss y. Xiao-Hui Fan, de Princeton, han descubierto recientemente un cuásar muy lejano, situado a más de doce mil millones de años luz de la Tierra.

Cuanto más lejos miremos, más atrás en el tiempo veremos. Los premios Nobel Asno Penzias y Bob Wilson son los científicos que han ido más lejos escudriñando el pasado. Descubrieron la radiación cósmica de fondo, constituida por fotones en la banda de las microondas que nos bombardean desde todas las direcciones del espacio y que son un residuo de la más temprana infancia del universo. Esos fotones llegan directamente a nosotros desde hace trece mil millones de años, cuando el universo se supone que tenía tan sólo trescientos mil años.

Nuestros telescopios son, en cierto sentido, máquinas del tiempo que permiten a los astrónomos conocer qué aspecto tenía el universo en diferentes épocas. Cuando un astrónomo observa una galaxia en proceso de formación es como si un paleontólogo pudiera contemplar hoy la vida real de los dinosaurios. Una supernova que estalle en una lejana galaxia aparecerá en el periódico de hoy, cuando su luz nos alcanza, aunque el suceso haya tenido lugar hace millones de años.

Pero también podríamos desear ver sucesos pasados ocurridos en la Tierra. Incluso eso es posible. Cuando nos miramos en un espejo, en realidad estamos viendo una versión ligeramente más joven de nosotros mismos. Empleando luz visible, ¿cuál es la mayor distancia hacia el pasado que podemos observar desde la Tierra?

Los astronautas del proyecto Apolo dejaron algunos reflectores en la Luna. Un reflector de esquina consta de tres espejos unidos de modo que formen ángulos rectos dos a dos, como el suelo y las dos paredes en un rincón de una habitación.

Si se dirige un haz de luz hacia un reflector de esquina, el haz se reflejará sucesivamente en los tres espejos y regresará exactamente en la dirección en la que llegó. Así pues, hoy día los científicos de la Tierra pueden hacer rebotar rayos láser en los catadióptricos de la Luna y recuperarlos de vuelta. Nuestro satélite se halla, en promedio, a unos trescientos noventa mil kilómetros de distancia, lo que equivale a 1,3 segundos luz, de modo que el viaje de ida y vuelta dura 2,6 segundos.

Cuando esos científicos observan el retomo de la señal láser en sus telescopios, están presenciando un suceso, el envío de un pulso de luz láser, que tuvo lugar en la Tierra 2,6 segundos antes. Están, por lo tanto, contemplando el pasado terrestre. Aunque no podamos «ver» las ondas de radio, éstas también nos permiten contactar con el pasado. El radiotelescopio Goldstone de California hizo rebotar una señal de radar en los anillos de Saturno.

 La duración total del viaje para la señal fue de 2,4 horas. Cuando fue recibida de vuelta, los astrónomos estaban en realidad detectando su emisión desde la Tierra 2,4 horas antes. Supongamos que quisiéramos observar la Tierra tal como era hace un año, Bastaría con situar un enorme reflector de esquina a medio año luz de nosotros y dirigir hacia él un potente telescopio.

Los satélites espías situados a más de trescientos kilómetros de altura pueden distinguir las matrículas de los coches que circulan por las calles. Desde trescientos kilómetros de distancia, un telescopio de 1,8 metros de diámetro puede diferenciar objetos menores de 8 centímetros, lo que constituye la mejor resolución posible desde el espacio debido a la refracción variable de la atmósfera terrestre.

Fuentes:
Richard Gott – Los Viajes en el Tiempo
Margaret Cheney – Tesla Man out of Time
David Deutsch – Física Cuántica de los Viajes a través del Tiempo
Tim Swartz – Los Diarios Perdidos de Nikola Tesla
John Titor – John Titor, un Viajero en el Tiempo
Adolfo Perez Agusti – H.G. Wells y la Máquina del Tiempo
Daniel Verón y Alberto Seoane (Contacto con la Creación) – John Titor y Andrew Carlssin, ¿viajeros del tiempo?

No hay comentarios:

Publicar un comentario

Related Posts Plugin for WordPress, Blogger...