miércoles, 8 de agosto de 2018

¿Hay vida en Titán, el misterioso satélite de Saturno? (y II)

En la atmósfera el metano tiene una vida breve por lo que es necesaria su reposición.

El metano forma nubes en la atmósfera, condensado sobre aerosoles formando lluvia cuyos ríos serían responsables del moldeado del relieve de Titán y de hipotéticos lagos o mares.

Es también responsable en parte de la opacidad de la atmósfera. Su futura desaparición de la atmósfera por no haber más procesos de sublimación provocaría un cambio drástico en el régimen climático de Titán.

La compleja fotoquímica de la atmósfera superior podría convertir el etano en acetileno y etileno que combinados con el nitrógeno atmosférico podrían formar los bloques básicos para la aparición de aminoácidos; sin embargo, se ha detectado en la superficie titaniana una deficiencia del primer compuesto, lo cual junto a la desaparición de hidrógeno cayendo a la superficie de ésta luna sugiere que allí están teniendo lugar complejos procesos químicos, aunque que tales procesos sean causados por hipotética vida basada en el metano parece algo muy remoto.




El 27 de julio de 2006 investigadores españoles de la Universidad del País Vasco, en Bilbao, Ricardo Hueso y Agustín Sánchez-Lavega, publicaron en la revista Nature un artículo estudiando la formación de tormentas de metano líquido en Titán. Según este estudio se producen cada cierto tiempo, cuando se dan las condiciones apropiadas de humedad y temperatura, fuertes tormentas que descargan precipitaciones importantes de metano.

Los investigadores han formulado un modelo que demostraría que estas tormentas y las subsiguientes precipitaciones de metano serían las causantes de los cauces y estructuras fluviales de reciente formación detectadas por la sonda Cassini/Huygens.

El modelo publicado en Nature demuestra que puede haber tormentas y llover en la superficie. De este modo Titán y la Tierra serían los únicos lugares en el Sistema Solar en los que llueve sobre su superficie.

Las simulaciones numéricas por ordenador han demostrado que las nubes rápidas y brillantes observadas en Titán pueden desencadenar lluvias de metano con gotas de este líquido de hasta 5 mm de radio. Según estos autores estas tormentas se desencadenan en cuestión de horas de forma similar a como lo hacen las tormentas terrestres.

Las tormentas de metano, capaces de alcanzar en su desarrollo vertical los 35 kilómetros de altura, producirían en cuestión de horas densas nubes de metano y copiosas precipitaciones de gotitas líquidas de este compuesto, semejantes a las más intensas trombas de agua que se producen en las tormentas terrestres. Una de tales tormentas -del tamaño de la India- ha sido detectada mediante observaciones con telescopios de infrarrojos en la región tropical de Titán, una zona que en la que no se habían visto nubes. Tras su formación se desplazó en dirección sureste generando nuevos sistemas nubosos.

En el mismo número de Nature se publica un estudio de Tetsuya Tokano de la Universidad de Colonia, Alemania, donde se estudia la lluvia de metano en forma de rocío sobre la superficie de Titán en la región de descenso de la sonda Huygens. Los datos de Huygens indican la presencia de una baja y apenas visible nube de metano-nitrógeno que libera gotas de lluvia que caen hacia la superficie de Titán todo el tiempo, produciendo, en total, unos 50 litros por m2 de precipitación anual.

Otros estudios estimaban la precipitación total en Titán en aproximadamente 10 L/m2 comparados con aproximadamente 1000 L/m2 en la Tierra, e indicaban que las tormentas en Titán podrían estar espaciadas entre sí por cientos de años, y en cambio ser mucho más copiosas que las terrestres.

Como causas de este ciclo hidrológico exagerado se indican la baja radiación solar que llega a Titán, una milésima parte que la que llega a la Tierra, y la alta capacidad de retención de humedad de la atmósfera de Titán, equivalente a varios metros de precipitación líquida, comparada con los pocos centímetros de agua precipitada en la atmósfera terrestre.

Una comparación de imágenes tomadas en 2004 y 2005 muestra cambios en lagos situados en el polo Sur de Titán, los cuales han sido atribuidos a una tormenta de metano que ha llenado tales lagos, muy posiblemente causada por la actividad meteorológica existente allí.

La evidencia más sólida a favor de la presencia de precipitación de metano ha sido avistada a finales de 2010, en una época de la primavera de allí equivalente a principios de abril en la Tierra, y consistiendo tanto en la observación de grandes sistemas de tormentas en el ecuador de Titán cómo en cambios de brillo en ésa zona, las cuales se cree han sido causadas debido a la lluvia asociada a ellas.

A pesar de las densas capas de niebla que rodean a Titán el instrumento VIMS a bordo de la misión Cassini/Huygens fue capaz de obtener una imagen infrarroja de la superficie del satélite mostrando una superficie cubierta de diferentes materiales en el hemisferio sur.

También se puede apreciar una región circular que podría ser un cráter en el norte. La brillante mancha blanca en el hemisferio sur cerca del polo podría ser una formación meteorológica en la nube de metano. Hasta los reiterados pasos de la sonda Cassini los mapas de la superficie de Titán eran poco precisos debido a la opacidad de la atmósfera. Mediante las imágenes en 1994 del Telescopio Espacial Hubble se descubrió una región que se denominó extraoficialmente Xanadu, por la antigua capital de verano del imperio mongol, y de su señor Kublai Khan.

Es un área grande del tamaño de Australia, e inicialmente no estaba claro el tipo de terreno que era y se pensó en que se trataba de mares de metano. Los lagos de hidrocarburo podrían haber sido perceptibles observando luz del sol que se refleja en la superficie de cualquier líquido, pero no se ha observado ninguna reflexión especular.

Imágenes de la nave espacial Cassini revelaron que la región de Xanadu, poseía características geológicas similares a la Tierra, con colinas, valles y dunas de arena oscura, cortadas por cauces similares a los ríos de la Tierra. Xanadú, es una inmensa zona de Titán cuya altura es considerablemente más elevada que el promedio, se trata pues de un continente.

En octubre de 2007 en imágenes tomadas con los telescopios VLT y Keck, se ha detectado metano líquido en la parte baja de la atmósfera de Titán y sobre el continente. Se trata de lluvia de metano que según una nota de prensa conjunta entre los observatorios de ESO y de los telescopios Keck, podría estar producida por una fenómeno análogo a la lluvia costera en la Tierra.

La bruma ascendería por las laderas de las montañas al amanecer, se enfriaría, y se condensaría en forma de gotas de lluvia. La presencia de lagos ha sido descubierta por la nave Cassini en julio de 2006 cerca del polo norte de Titán.

Cassini ha tomado fotos de mayor resolución de estos rasgos, y también ha descubierto enigmáticos rasgos lineales que algunos científicos han sugerido pueden indicar actividad tectónica.

Durante el acercamiento a Titán del 26 de octubre de 2004, se observó una superficie lisa con pocos cráteres de impacto; hasta la fecha sólo se conocen unos pocos, los cuales incluyen un cráter de 440 kilómetros de diámetro y varios anillos conocido como Menrva, otro llamado Sinlap de suelo liso y 80 kilómetros de diámetro, otro con pico central y suelo oscuro llamado Ksa, que tiene 30 kilómetros de diámetro., y finalmente uno de de 112 kilómetros de diámetro con pico central pequeño, suelo llano, y de forma algo irregular aún sin nombre.

Además, se han descubierto diversas estructuras crateriformes que quizás sean cráteres de impacto, pero que carecen de ciertos rasgos que faciliten su identificación de manera segura.




 Esto sugiere que Titán tiene una superficie activa que se renueva constantemente. Las primeras imágenes de radar han revelado un mundo complejo, con unas áreas rugosas y otras lisas.

Hay rasgos que parecen de origen volcánico cómo por ejemplo Ganesa Macula, la cual fue estudiada con el radar de la sonda tanto durante ése sobrevuelo cómo en uno posterior acontecido durante el 13 de enero de 2007 y que es interpretada como un volcán que funcionaría a bajas temperaturas, por lo que se ha denominado criovolcán, y que probablemente arroja agua mezclada con amoníaco, aunque otras interpretaciones de un cráter de impacto también han sido sugeridas.

Otros rasgos que se sospechan de origen criovolcánico son una cuenca descubierta cerca del polo sur (aunque también se ha sugerido que puede ser un cráter de impacto degradado y lleno de materiales sedimentarios ó el producto de un colapso debido a metano existente bajo la superficie), que quizás haya estado llena de hidrocarburos líquidos.

Es un rasgo brillante en el infrarrojo y quizás variable con el tiempo, que muestra estructuras posiblemente causadas por el fluir de fluidos tan viscosos como la lava terrestre, así como canales seguramente excavados por lluvias de metano y la presencia de compuestos distintos a los que se hallan a su alrededor.

Se sospecha que ahora hay cierta actividad allí, lo cual de confirmarse convertiría a esta estructura en el primer criovolcán activo descubierto en Titán. El considerado mejor candidato a criovolcán, sin embargo, es Sotra Facula, una estructura que consta de dos picos de más de 1000 metros de altura, cráteres de hasta 1500 metros de profundidad, y flujos de materiales.

Recientes análisis de los datos enviados por Cassini -como la presencia de depósitos temporales de hielo de amoniaco (que se cree se halla en el interior de Titán) en la superficie – parecen dar un fuerte espaldarazo a la presencia de criovulcanismo, aunque no todos los científicos están de acuerdo con dichos análisis.

Y de hecho algunos han sugerido que en realidad Titán es un mundo muerto geológicamente cuyos rasgos superficiales han sido causados en su mayoría por procesos externos (impactos de asteroides y cometas que han creado cráteres en su superficie seguidos de erosión causada por el viento y fluidos moviéndose por su superficie, que los han desdibujado dándoles la falsa apariencia de haber sido causados por criovulcanismo). Ha sido comparado a Calisto, el satélite galileano más externo de Júpiter, sólo que con atmósfera y por tanto con tiempo atmosférico.

Durante los diversos acercamientos a Titán de la sonda Cassini se han observado más detalles gracias sobre todo al uso de su radar.

Destacan en particular formaciones lineales interpretadas como campos de dunas, lo que parecen ser cráteres de impacto; canales seguramente producidos por metano líquido similares a los vistos por la sonda Huygens en su descenso, y lo que parece ser una línea de costa en el hemisferio Sur de la luna.

Las temperaturas en la superficie de esta luna son del orden de 90 K, y la presión cercana a 1.4 bar. En estas condiciones el metano estaría por debajo de su punto de saturación y no existirían lagos o ríos de metano.

Otros hidrocarburos formados a partir del metano, como el etano, sí podrían estar saturados y en estado líquido en la superficie constituyendo una analogía con el agua en la Tierra. Estos depósitos líquidos podrían contener importantes cantidades de metano disueltos. 

 Durante el sobrevuelo del día 25 de octubre de 2006, han sido descubiertas, mediante el uso del instrumento VIMS, las que son las montañas más altas de Titán hasta la fecha, con una longitud de 150 kilómetros, una anchura de 30 kilómetros, y una altura de 1,5 kilómetros. Estas montañas parecen estar hechas de hielo cubierto por una especie de “nieve” de material orgánico.

En ese mismo sobrevuelo, también ha sido descubierto lo que parece ser un nuevo criovolcán. Posteriormente, se han descubierto mediante el uso del radar de Cassini nuevas cordilleras montañosas, con alturas de hasta 2 kilómetros.

Varias de ellas se sitúan en el ecuador y se extienden de oeste a este, lo que sugiere de acuerdo a los modelos un origen común para ellas: la contracción del satélite debido al decaimiento de isótopos radiactivos en su interior, lo que conlleva una congelación del océano existente bajo la superficie y con ello un engrosamiento de la corteza titaniana hasta que se rompe creando las montañas, un fenómeno parecido al que creó los Montes Zagros en Irán.

Titán parece también tener terrenos similares a los terrenos cársticos terrestres, aunque cómo se ha comentado antes con los hidrocarburos líquidos reemplazando al agua y el hielo con materiales orgánicos. Esto sugiere que podría tener cavernas subterráneas formadas de modo similar. El 5 de mayo de 2006 se publicó en la revista Science que mediante observaciones de radar de la nave Cassini, se había descubierto que Titán tiene dunas de color marrón oscuro que se elevan unos 150 metros sobre la superficie y corren paralelas, una al lado de la otra, en el ecuador de Titán. Una de estas dunas tiene 1500 kilómetros de largo.

Se extienden a lo largo de cientos de kilómetros en Titán. De acuerdo con las mediciones del instrumento VIMS, las dunas de Titán probablemente están compuestas de un núcleo central de hielo de agua rodeado por materia orgánica, estimándose que la “arena” formada por ésos granos es un poco más granulosa, pero menos densa que la terrestre o la marciana y que los granos tienen el tamaño de granos de café. Este trabajo se basó en las imágenes tomadas en el mes de octubre de 2005. Se han encontrado dunas, aparte de la Tierra, en Marte y Venus. Titán tiene una densa atmósfera, pero está tan alejado del Sol que los científicos dudaban de que la atmósfera tuviese la suficiente energía para desarrollar los vientos necesarios para erosionar y apilar la arena.

 La enorme gravedad de Saturno crea fuerzas mareas en la atmósfera de Titán, que si es comparada con la que ejerce la Tierra sobre la Luna, es 400 veces mayor. Los modelos de computadora revelan que estas mareas serían los responsables de los vientos cercanos a la superficie de Titán. Los tipos de dunas observadas con forma longitudinal o lineal son características de su formación por vientos.

Es posible que las mareas de viento acarreen sedimentos oscuros desde latitudes altas hacia el ecuador y formen así el cinturón oscuro de Titán.

Se presume que estas dunas se forman cuando la lluvia de metano líquido erosiona partículas de rocas de hielo.

Así pues la región ecuatorial del satélite no estaría formada por mares sino que sería una zona desértica, aunque en latitudes más altas podría haber lagos de metano; según se cree, la “arena” se forma mediante la fusión de partículas de materia orgánica del tamaño de partículas de humo que precipitan desde la atmósfera, y no por erosión cómo ocurre en la Tierra. 

Una prueba a favor de ésta teoría es que los granos parecen tener poca agua y bastante material orgánico. Recientemente, la NASA ha hecho público un mapa en el que se muestra el patrón global de dichas dunas. De acuerdo con los resultados publicados, la dirección predominante de los vientos cerca de la superficie es hacia el este y no hacia el oeste cómo se pensó en un principio.

observaciones continuadas por parte de la sonda Cassini han permitido explorar con menor grado de detalle áreas mucho mayores que la región sobre la que aterrizó Huygens. Algunas de las imágenes así obtenidas sugieren la presencia de lagos líquidos de metano en la superficie.

La sonda Cassini, utilizando su sistema de radares, captó el 21 de julio de 2006 dos “manchas oscuras”, similares a los lagos terrestres, que constituyen una “poderosa evidencia” de que hay depósitos de hidrocarburos en el satélite.

 Las “manchas” miden 420 kilómetros por 150, y 475 por 150 y están en el polo norte de Titán, es decir, donde aún son más bajas las temperaturas, dado que el satélite tiene un ángulo de inclinación de su eje de 27 grados, lo que le hace tener —como la Tierra, donde el ángulo es de 23 grados— estaciones y zonas más frías.

El día 8 de julio de 2009 la sonda Cassini fotografió el primer reflejo especular sobre la superficie del satélite, confirmando la presencia de líquido sobre la superficie. La sonda Cassini, en su sobrevuelo de Titán del día 23 de septiembre de 2006, descubrió más posibles lagos cerca del polo norte. El primero se localiza a 74º Norte y 65º Oeste, y tiene un tamaño de 20 × 25 kilómetros. Muestra claramente las líneas de costa y se observan varias bahías estrechas y una península.




 En otra imagen se ven dos lagos comunicados de unos 60 × 40 kilómetros. Están localizados a 73º Norte y 46º Oeste, y uno de ellos tiene manchas más claras, lo que podría indicar que se está secando lentamente según se aproxima el verano al hemisferio norte. En el sobrevuelo del día 9 de octubre de 2006 han sido descubiertos más de 75 posibles lagos en las proximidades del polo norte de Titán, entre 70ºN y 83ºN.

También han sido descubiertas estructuras similares —los primeros en un sobrevuelo acaecido el día 2 de octubre de 2007 —, así como estructuras causadas por el fluir de líquidos, en la región polar del hemisferio Sur.

El hecho de que parezca haber menos estructuras de este tipo en esa zona que en su equivalente del hemisferio Norte, así como la presencia de lo que posiblemente son cuencas de lagos secos, es consistente con la teoría de que dichas estructuras son lagos que se llenan durante el invierno y se secan durante el verano de Titán.

Con todo, el mayor de todos los posibles lagos conocido hasta la fecha ha sido descubierto durante un sobrevuelo acontecido el día 22 de febrero de 2007.

 Con una superficie de más de 100.000 km2, es mayor que el Lago Superior en América del Norte y, en proporción, es mayor que el Mar Negro, lo cual ha llevado a los científicos a considerarlo un mar más que un lago. El 3 de enero de 2007 la revista Nature publicó el descubrimiento de que estos lagos son de metano líquido y se llenan bien por lluvia o por depósitos de metano líquido del subsuelo, siendo lo primero bastante plausible al verse los barrancos que los alimentan.

Éste descubrimiento ha sido confirmado en un sobrevuelo realizado en diciembre de 2007, en el cual se han detectado de manera inequívoca hidrocarburos líquidos en uno de tales posibles lagos (Ontario Lacus), el cual en concreto está situado en el polo Sur de Titán. Y en el polo Norte, en un sobrevuelo realizado en julio de 2009, el instrumento VIMS de Cassini captó el reflejo de la luz del Sol en un lago del polo Norte de Titán.

Otras pruebas de que dichas estructuras están llenas de líquido —probablemente metano— son la baja reflectividad en el radar, la cual indica profundidades de al menos decenas de metros, así como la presencia de islas.Y que una comparación de imágenes tomadas por radar en diferentes sobrevuelos muestra cómo están desapareciendo lagos en el hemisferio Sur de Titán, algo interpretado como que se están evaporando.

Un estudio del Caltech publicado en 2010 confirmó que los lagos del hemisferio sur están evaporándose a una velocidad de 1 metro por año. Por ahora se desconoce la razón por la que el polo norte de Titán tiene más lagos que el polo sur; sin embargo, una teoría reciente sugiere que es debido a la excentricidad de la órbita de Saturno alrededor del Sol, lo que provoca que el metano tienda a concentrarse en el hemisferio norte de Titán, aunque al variar los parámetros orbitales de Saturno con el tiempo, esta situación puede invertirse cada muchos miles de años. 

Las misiones espaciales Pioneer 11 en 1979 y Voyager 1 y Voyager 2 en 1980 y 1981 realizaron sobrevuelos del sistema de Saturno. El Voyager 1 se desvió y abandonó la eclíptica para hacer un sobrevuelo más cercano a Titán. Desgraciadamente el Voyager 1 no poseía ningún instrumento para penetrar la niebla de Titán. Muchos años después, un proceso digital de las imágenes tomadas por Voyager 1 con el filtro anaranjado reveló el rasgo oscuro conocido como Xanadu.

El Voyager 2 sólo echó una mirada superficial a Titán, pues el equipo de vuelo tenía la opción de dirigir la nave espacial para una exploración en detalle de Titán o usar otra trayectoria que le permitiría visitar Urano y Neptuno. Dado la falta de rasgos de la superficie vista por Voyager 1, se adoptó la segunda opción.

En los últimos años las principales observaciones de Titán han sido realizadas por grandes telescopios terrestres equipados con óptica adaptativa, como el telescopio Keck.

 La misión Cassini/Huygens, de las agencias NASA, ESA y ASI, que explora el sistema de Saturno, se puso en órbita a Saturno el 1 de julio de 2004.

La sonda Cassini sobrevoló Titán el 26 de octubre de 2004 y empezó el proceso de trazar la superficie de Titán con el radar. Dos artículos recientes han publicado resultados de la sonda Huygens donde se revela la posibilidad de existencia de vida.

 La atmósfera de Titán es rica en metano, pero puesto que dicho gas es destruido constantemente por la luz ultravioleta, debe existir una fuente en Titán para mantener su nivel.

 En la destrucción del metano se produce hidrógeno y acetileno por lo que el hidrógeno debería de estar distribuido equitativamente a través de las distintas capas de la atmósfera. Sin embargo, hay una disparidad entre la densidad de hidrógeno observada de la esperada según este mecanismo.

 Pues parece que el hidrógeno desaparece en la superficie del satélite por culpa de algún mecanismo desconocido. La rareza de este fenómeno, y la necesidad de una fuente de metano son claros indicios de la posible existencia de vida.

El 14 de enero de 2005 la sonda Huygens aterrizó de manera satisfactoria sobre la superficie de Titán en una región conocida como Adiri, obteniendo imágenes durante su descenso y en la superficie. La panorámica durante el descenso muestra suaves colinas con canales de drenaje. Los canales parecen conducir a una región cercana, ancha plana y oscura. Parece incluso verse una zona de costa e incluso islas, y lo que parece ser un mar de metano, todo en un ambiente brumoso.

Los científicos de la ESA estiman que la sonda podría haber descendido sobre la región oscura. La imagen tomada tras el aterrizaje muestra una superficie plana cubierta por piedras en forma de guijarros redondeados, como si hubiesen sido erosionados por algún líquido. Los guijarros podrían estar formados en su mayoría de hielos de agua. No hay que olvidar que, en Titan, no existe agua líquida en su superficie, aunque si existe agua congelada.

Dicho hielo está presente en forma de rocas. Una semana después del aterrizaje, Martín Tomasko, de la Universidad de Arizona y responsable de las cámaras de la Huygens, declaró: “Ahora disponemos de la clave para saber lo que moldea el paisaje de Titán. Las pruebas geológicas de precipitaciones, erosión, abrasión mecánica y actividad fluvial que han dado forma a Titán son muy parecidos a los que han moldeado la Tierra“. Para Jean Pierre Levreton:

“La superficie de Titán sería parecida a un desierto en Arizona” donde el suelo sería de hielo sucio y las rocas que se aprecian en la fotografía serían hielos.

Las fotos muestran una compleja red de estrechos canales de drenaje que descienden desde las brillantes montañas hasta regiones más bajas llanas y oscuras. Hay lagos, costas e islas asombrosamente parecidos a la Tierra.

E incluso llueve, no cuando aterrizó la nave, pero probablemente hacía poco que lo había hecho. Sin embargo la analogía acaba aquí. Titán es un mundo gobernado por sus bajas temperaturas de –179 °C, con una atmósfera de nitrógeno y metano. Allí el metano cumple el papel del agua en la Tierra formando nubes en su atmósfera. 

Cuando condensa sobre los aerosoles forma una lluvia de metano con partículas que llena los torrentes con un material negro que fluye. Pero ahora los cañones y los lagos están secos porque el metano, al igual que el agua en la Tierra, se infiltra bajo el suelo de Titán, dejando en la superficie restos de materia orgánica.

Sabemos que llueve metano porque la sonda iba provista de un sensor en forma de bastón, que fue lo primero que tocó tierra y que luego penetró en ella. Según John Zarnecki, de la Open University, en un primer instante encontró fuerte resistencia, de lo que se deduce que sobre la superficie hay una costra con la consistencia de la arcilla.

A este respecto, recordemos que que la palabra «Titán» procede del griego τιτανος, que significa ‘tierra blanca’, ‘arcilla’ o ‘yeso’, y que los Titanes mitológicos eran ‘hombres de arcilla blanca’ u hombres cubiertos de arcilla blanca o polvo de yeso en sus rituales Los sensores detectaron transferencia de calor y evaporación de metano.

Una parte importante de los datos se perdió debido a un fallo de comunicación a través de uno de los dos canales de comunicaciones de los que disponía la sonda. En marzo de 2007, la ESA, la NASA, y el COSPAR (international Commitee for Space Research) decidieron de común acuerdo nombrar el lugar de aterrizaje de la sonda Huygens cómo Hubert Curien Memorial Station, en memoria de Hubert Curien, un presidente de la Agencia Espacial Europea.

Hace poco, la investigadora de la UAF, Katey Walter, llevó a una tripulación de la Radio Pública Nacional a la vertiente norte de Alaska, esperando mostrarles lo que sucede cuando se libera metano del permafrost derretido bajo los lagos. Cuando alcanzaron su destino, Walter y la tripulación encontraron más de lo que esperaban: un lago hirviendo violentamente con escapes de metano. “Hacía frío, humedad y viento.




Nos dejaron en mitad de ninguna parte en un helicóptero y chapoteamos hacia una descomunal columna de metano en el centro del lago sin idea de qué esperar, cómo de fuerte sería la columna burbujeante, si nuestra balsa se mantendría a flote, cómo de peligroso sería inhalar el gas”, dijo Walter, profesora asistente en el Instituto de Ingeniería del Norte de la UAF y el Centro de Investigación Ártica Internacional. “Las violentas corrientes de burbujas hacían que el lago pareciese estar hirviendo, pero el agua estaba bastante fría”.

Walter estudia las emisiones de metano de los lagos árticos, especialmente la conexión entre el derretimiento del permafrost y el cambio climático. Cuando el permafrost de alrededor de los bordes de los lagos se derrite, el material orgánico que hay en él – plantas y animales muertos – pueden entrar al fondo del lago, donde las bacterias lo convierten en metano, cuyas burbujas pasan a la atmósfera, a veces de una forma muy espectacular. El metano es un gas invernadero mucho más potente que el dióxido de carbono.

Walter dijo que su trabajo de campo indica que los puntos calientes de metano, tales como los que experimentaron ella y la tripulación, pueden provenir de distintas fuentes, no sólo del permafrost derretido. Su siguiente objetivo es identificar y cuantificar las fuentes de los puntos calientes de metano alrededor de Alaska.

 “Es improbable que esta columna de metano esté relacionada con el derretimiento del permafrost”, dijo Walter, añadiendo que el metano que hervía en el lago estaría más posiblemente relacionado con un escape de gas natural.

“Deberían liberarse grandes cantidades de hidratos de metano, por ejemplo, junto con el derretimiento del permafrost, entonces podríamos tener grandes incrementos repentinos en el metano atmosférico que afectaría de forma potencialmente grande a las temperaturas globales”. Es sorprendente su aparente similitud con lo que ocurre en Titán.

No hay comentarios:

Publicar un comentario

Related Posts Plugin for WordPress, Blogger...